World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue

    In this paper we prove the existence of quasistatic evolutions for a cohesive fracture on a prescribed crack surface, in small-strain antiplane elasticity. The main feature of the model is that the density of the energy dissipated in the fracture process depends on the total variation of the amplitude of the jump. Thus, any change in the crack opening entails a loss of energy, until the crack is complete. In particular this implies a fatigue phenomenon, i.e. a complete fracture may be produced by oscillation of small jumps. The first step of the existence proof is the construction of approximate evolutions obtained by solving discrete-time incremental minimum problems. The main difficulty in the passage to the continuous-time limit is that we lack of controls on the variations of the jump of the approximate evolutions. Therefore we resort to a weak formulation where the variation of the jump is replaced by a Young measure. Eventually, after proving the existence in this weak formulation, we improve the result by showing that the Young measure is concentrated on a function and coincides with the variation of the jump of the displacement.

    Communicated by G. Dal Maso

    AMSC: 74C05, 74R99, 35Q74, 74G65, 35A35

    References

    • 1. R. Abdelmoula, J.-J. Marigo and T. Weller, Construction d’une loi de fatigue à partir d’un modèle de forces cohésives: cas d’une fissure en mode III, C. R. Mecanique 337 (2009) 53–59. CrossrefGoogle Scholar
    • 2. R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal. 214 (2014) 575–615. Crossref, ISIGoogle Scholar
    • 3. R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity: Variational formulation and main properties, Mech. Materials 80 (2015) 351–367. Crossref, ISIGoogle Scholar
    • 4. S. Almi, Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening, ESAIM Control Optim. Calc. Var. 23 (2017) 791–826. Crossref, ISIGoogle Scholar
    • 5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (Oxford Univ. Press, 2000). Google Scholar
    • 6. M. Artina, F. Cagnetti, M. Fornasier and F. Solombrino, Linearly constrained evolutions of critical points and an application to cohesive fractures, Math. Models Methods Appl. Sci. 27 (2017) 231–290. Link, ISIGoogle Scholar
    • 7. J.-F. Babadjian and A. Giacomini, Existence of strong solutions for quasi-static evolution in brittle fracture, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) 925–974. Google Scholar
    • 8. M. Barchiesi, G. Lazzaroni and C. I. Zeppieri, A bridging mechanism in the homogenisation of brittle composites with soft inclusions, SIAM J. Math. Anal. 48 (2016) 1178–1209. Crossref, ISIGoogle Scholar
    • 9. G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech. 7 (1962) 55–129. CrossrefGoogle Scholar
    • 10. G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems, J. Reine Angew. Math. 458 (1995) 1–18. ISIGoogle Scholar
    • 11. B. Bourdin, G. A. Francfort and J.-J. Marigo, The Variational Approach to Fracture (Springer, 2008). Reprinted from J. Elasticity 91 (2008) 5–148. Google Scholar
    • 12. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, 1973). Google Scholar
    • 13. F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path, Math. Models Methods Appl. Sci. 18 (2008) 1027–1071. Link, ISIGoogle Scholar
    • 14. F. Cagnetti and R. Toader, Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A Young measures approach, ESAIM: Control Optim. Calc. Var. 17 (2011) 1–27. Crossref, ISIGoogle Scholar
    • 15. A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal. 167 (2003) 211–233. Crossref, ISIGoogle Scholar
    • 16. S. Conti, M. Focardi and F. Iurlano, Phase field approximation of cohesive fracture models, Ann. Inst. H. Poincaré Anal. Non Linéaire 44 (2015) 1033–1067. Google Scholar
    • 17. S. D. CramerB. S. Covino (eds.), Corrosion: Fundamentals, Testing, and Protection, ASM Handbook, Vol. 13A (ASM International, 2003). CrossrefGoogle Scholar
    • 18. V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model, ESAIM Control Optim. Calc. Var. 22 (2016) 883–912. Crossref, ISIGoogle Scholar
    • 19. V. Crismale, Globally stable quasistatic evolution for strain gradient plasticity coupled with damage, Ann. Mat. Pura Appl. 196 (2017) 641–685. CrossrefGoogle Scholar
    • 20. V. Crismale and G. Lazzaroni, Viscoupros apximation of quasistatic evolutions for a coupled elastoplastic-damage model, Calc. Var. Partial Differential Equations 55(17) (2016). Google Scholar
    • 21. V. Crismale and G. Lazzaroni, Quasistatic crack growth based on viscous approximation: A model with branching and kinking, NoDEA Nonlinear Differential Equations Appl. 24(7) (2017). Google Scholar
    • 22. V. Crismale and G. Orlando, A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n, NoDEA Nonlinear Differential Equations Appl. 25(16) (2018). Google Scholar
    • 23. G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005) 165–225. Crossref, ISIGoogle Scholar
    • 24. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) 257–290. Crossref, ISIGoogle Scholar
    • 25. G. Dal Maso, G. Orlando and R. Toader, Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case, Calc. Var. Partial Differential Equations 55(45) (2016). Google Scholar
    • 26. G. Dal Maso, G. Orlando and R. Toader, Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation, Adv. Cal. Var. 10 (2016) 183–207. ISIGoogle Scholar
    • 27. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal. 162 (2002) 101–135. Crossref, ISIGoogle Scholar
    • 28. G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253–279. Crossref, ISIGoogle Scholar
    • 29. A. Ferriero, Quasi-static evolution for fatigue debonding, ESAIM Control Optim. Calc. Var. 14 (2008) 233–253. Crossref, ISIGoogle Scholar
    • 30. G. A. Francfort and C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Comm. Pure Appl. Math. 56 (2003) 1465–1500. Crossref, ISIGoogle Scholar
    • 31. G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998) 1319–1342. Crossref, ISIGoogle Scholar
    • 32. M. Friedrich and F. Solombrino, Quasistatic crack growth in 2D-linearized elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) 27–64. Crossref, ISIGoogle Scholar
    • 33. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A 221 (1920) 163–198. CrossrefGoogle Scholar
    • 34. D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Math. Models Methods Appl. Sci. 18 (2008) 1529–1569. Link, ISIGoogle Scholar
    • 35. D. Knees, A. Mielke and C. Zanini, Crack growth in polyconvex materials, Physica D 239 (2010) 1470–1484. Crossref, ISIGoogle Scholar
    • 36. M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem, Math. Mech. Solids 11 (2006) 423–447. Crossref, ISIGoogle Scholar
    • 37. G. Lazzaroni, Quasistatic crack growth in finite elasticity with Lipschitz data, Ann. Mat. Pura Appl. (4) 190 (2011) 165–194. Crossref, ISIGoogle Scholar
    • 38. G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci. 21 (2011) 2019–2047. Link, ISIGoogle Scholar
    • 39. G. Lazzaroni and R. Toader, Some remarks on the viscous approximation of crack growth, Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 131–146. Crossref, ISIGoogle Scholar
    • 40. A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Applied Mathematical Sciences, Vol. 193 (Springer, 2015). CrossrefGoogle Scholar
    • 41. M. Negri and R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface, Nonlinear Anal. Real World Appl. 38 (2017) 271–305. Crossref, ISIGoogle Scholar
    • 42. M. Negri and E. Vitali, Approximation and characterization of quasi-static H1-evolutions for a cohesive interface with different loading-unloading regimes, to appear on Interfaces Free Bound. Google Scholar
    • 43. T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem, Contin. Mech. Thermodyn. 21 (2009) 223–235. Crossref, ISIGoogle Scholar
    • 44. M. Valadier, Young measures, in Methods of Nonconvex Analysis, Lecture Notes in Mathematics, Vol. 1446 (Springer, 1990), pp. 152–188. CrossrefGoogle Scholar
    Published: 6 April 2018
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!