World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Numerical approximation of statistical solutions of planar, incompressible flows

    https://doi.org/10.1142/S0218202516500597Cited by:6 (Source: Crossref)

    We present a finite difference-(multi-level) Monte Carlo algorithm to efficiently compute statistical solutions of the two-dimensional incompressible Navier–Stokes equations (NSE), with periodic boundary conditions and for arbitrary high Reynolds number. We propose a reformulation of statistical solutions in the sense of Foiaş and Prodi in the vorticity-stream function form. The vorticity-stream function formulation of the NSE in two-space dimensions is discretized with a finite difference scheme. We obtain a convergence rate error estimate for this approximation which is explicit in the viscosity parameter ν, under realistic assumptions on the solution regularity. We also prove convergence and complexity estimates, for the (multi-level) Monte Carlo finite difference algorithm to compute statistical solutions. Numerical experiments illustrating the validity of our estimates are presented. They show that the multi-level Monte Carlo algorithm can significantly accelerate the computation of statistical solutions in the sense of Foiaş and Prodi, even for very high Reynolds numbers.

    Communicated by F. Brezzi

    AMSC: 65N30

    References

    • 1. H. Abidi and R. Danchin, Optimal bounds for the inviscid limit of Navier–Stokes equations, Asymptot. Anal. 38 (2004) 35–46. Web of ScienceGoogle Scholar
    • 2. A. S. Almgren, J. B. Bell and W. G. Szymczak, A numerical method for the incompressible Navier–Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996) 358–369. Crossref, Web of ScienceGoogle Scholar
    • 3. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 343 (Springer, 2011). CrossrefGoogle Scholar
    • 4. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Users’ Manual, Technical Report ANL-95/11 — Revision 3.7, Argonne National Laboratory (2016). Google Scholar
    • 5. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc web page (2016), http://www.mcs.anl.gov/petsc. Google Scholar
    • 6. S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, eds. E. Arge, A. M. Bruaset and H. P. Langtangen (Birkhäuser, 1997), pp. 163–202. CrossrefGoogle Scholar
    • 7. A. Barth, C. Schwab and J. Sukys, Multilevel Monte Carlo simulation of statistical solutions to the Navier–Stokes equations, in Monte Carlo and Quasi-Monte Carlo Methods, Springer Series Computational Statistics, Vol. 163 (Springer, 2016), pp. 209–227. CrossrefGoogle Scholar
    • 8. J. B. Bell, P. Colella and H. M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (1989) 257–283. Crossref, Web of ScienceGoogle Scholar
    • 9. D. Chae, The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. I. 2-D periodic case, J. Math. Anal. Appl. 155 (1991) 437–459. Crossref, Web of ScienceGoogle Scholar
    • 10. D. Chae, The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. II. The general case, J. Math. Anal. Appl. 155 (1991) 460–484. Crossref, Web of ScienceGoogle Scholar
    • 11. A. Chorin, On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comput. 23 (1969) 341–353. Crossref, Web of ScienceGoogle Scholar
    • 12. Y. M. H. D. Gottlieb and S. Orszag, Theory and Application of Spectral Methods, Classics in Mathematics (SIAM, 1984). Reprint of the 1998 edition. Google Scholar
    • 13. C. Foiaş, Statistical study of Navier–Stokes equations. I, Rend. Sem. Mat. Univ. Padova 48 (1972) 219–348 (1973). Google Scholar
    • 14. C. Foiaş, Statistical study of Navier–Stokes equations. II, Rend. Sem. Mat. Univ. Padova 49 (1973) 9–23. Google Scholar
    • 15. C. Foiaş, O. Manley, R. Rosa and R. Temam, Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, Vol. 83 (Cambridge Univ. Press, 2001). CrossrefGoogle Scholar
    • 16. C. Foiaş and G. Prodi, Sur les solutions statistiques des équations de Navier–Stokes, Ann. Mat. Pura Appl. 111 (1976) 307–330. CrossrefGoogle Scholar
    • 17. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Classics in Mathematics (Cambridge Univ. Press, 1995). CrossrefGoogle Scholar
    • 18. M. B. Giles, Multilevel Monte Carlo methods, Acta Numer. 24 (2015) 259–328. Crossref, Web of ScienceGoogle Scholar
    • 19. V. Girault and P.-A. Raviart, Theory and algorithms, in Finite Element Methods for Navier–Stokes Equations, Springer Series in Computational Mathematics, Vol. 5 (Springer, 1986). CrossrefGoogle Scholar
    • 20. B. S. Jovanović and E. Süli, For linear partial differential equations with generalized solutions, in Analysis of Finite Difference Schemes, Springer Series in Computational Mathematics, Vol. 46 (Springer, 2014). CrossrefGoogle Scholar
    • 21. A. Krzhivitski and O. A. Ladyzhenskaya, A grid method for the Navier–Stokes equations, Soviet Phys. Dokl. 11 (1966) 212–213. Google Scholar
    • 22. D. Lévy and E. Tadmor, Non-oscillatory central schemes for the incompressible 2-D Euler equations, Math. Res. Lett. 4 (1997) 321–340. Crossref, Web of ScienceGoogle Scholar
    • 23. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Vol. 27 (Cambridge Univ. Press, 2002). Google Scholar
    • 24. S. Mishra, C. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, J. Comput. Phys. 231 (2012) 3365–3388. Crossref, Web of ScienceGoogle Scholar
    • 25. R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, CBMS–NSF Regional Conference Series in Applied Mathematics, Vol. 41 (SIAM, 1983). Google Scholar
    • 26. M. I. Višik and A. V. Fursikov, Solutions statistiques homogènes des systèmes differentiels paraboliques et du système de Navier–Stokes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 531–576. Google Scholar
    • 27. X. Wan and G. Karniadakis, Long-term behaviour of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Engrg. 195 (2006) 5582–5596. Crossref, Web of ScienceGoogle Scholar
    • 28. J. Witteveen, A. Loeven and H. Bijl, An adaptive stochastic finite element approach based on Newton-Cotes quadrature in simplex elements, Comput. Fluids 38 (2009) 1270–1288. Crossref, Web of ScienceGoogle Scholar