Numerical approximation of statistical solutions of planar, incompressible flows
Abstract
We present a finite difference-(multi-level) Monte Carlo algorithm to efficiently compute statistical solutions of the two-dimensional incompressible Navier–Stokes equations (NSE), with periodic boundary conditions and for arbitrary high Reynolds number. We propose a reformulation of statistical solutions in the sense of Foiaş and Prodi in the vorticity-stream function form. The vorticity-stream function formulation of the NSE in two-space dimensions is discretized with a finite difference scheme. We obtain a convergence rate error estimate for this approximation which is explicit in the viscosity parameter , under realistic assumptions on the solution regularity. We also prove convergence and complexity estimates, for the (multi-level) Monte Carlo finite difference algorithm to compute statistical solutions. Numerical experiments illustrating the validity of our estimates are presented. They show that the multi-level Monte Carlo algorithm can significantly accelerate the computation of statistical solutions in the sense of Foiaş and Prodi, even for very high Reynolds numbers.
Communicated by F. Brezzi
References
- 1. , Optimal bounds for the inviscid limit of Navier–Stokes equations, Asymptot. Anal. 38 (2004) 35–46. Web of Science, Google Scholar
- 2. , A numerical method for the incompressible Navier–Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996) 358–369. Crossref, Web of Science, Google Scholar
- 3. , Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 343 (Springer, 2011). Crossref, Google Scholar - 4. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc Users’ Manual, Technical Report ANL-95/11 — Revision 3.7, Argonne National Laboratory (2016). Google Scholar
- 5. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang and H. Zhang, PETSc web page (2016), http://www.mcs.anl.gov/petsc. Google Scholar
- 6. ,
Efficient management of parallelism in object oriented numerical software libraries , in Modern Software Tools in Scientific Computing, eds. E. Arge, A. M. Bruaset and H. P. Langtangen (Birkhäuser, 1997), pp. 163–202. Crossref, Google Scholar - 7. ,
Multilevel Monte Carlo simulation of statistical solutions to the Navier–Stokes equations , in Monte Carlo and Quasi-Monte Carlo Methods,Springer Series Computational Statistics , Vol. 163 (Springer, 2016), pp. 209–227. Crossref, Google Scholar - 8. , A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (1989) 257–283. Crossref, Web of Science, Google Scholar
- 9. , The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. I. 2-D periodic case, J. Math. Anal. Appl. 155 (1991) 437–459. Crossref, Web of Science, Google Scholar
- 10. , The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. II. The general case, J. Math. Anal. Appl. 155 (1991) 460–484. Crossref, Web of Science, Google Scholar
- 11. , On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comput. 23 (1969) 341–353. Crossref, Web of Science, Google Scholar
- 12. , Theory and Application of Spectral Methods,
Classics in Mathematics (SIAM, 1984). Reprint of the 1998 edition. Google Scholar - 13. , Statistical study of Navier–Stokes equations. I, Rend. Sem. Mat. Univ. Padova 48 (1972) 219–348 (1973). Google Scholar
- 14. , Statistical study of Navier–Stokes equations. II, Rend. Sem. Mat. Univ. Padova 49 (1973) 9–23. Google Scholar
- 15. , Navier–Stokes Equations and Turbulence,
Encyclopedia of Mathematics and Its Applications , Vol. 83 (Cambridge Univ. Press, 2001). Crossref, Google Scholar - 16. , Sur les solutions statistiques des équations de Navier–Stokes, Ann. Mat. Pura Appl. 111 (1976) 307–330. Crossref, Google Scholar
- 17. , Turbulence: The Legacy of A. N. Kolmogorov,
Classics in Mathematics (Cambridge Univ. Press, 1995). Crossref, Google Scholar - 18. , Multilevel Monte Carlo methods, Acta Numer. 24 (2015) 259–328. Crossref, Web of Science, Google Scholar
- 19. ,
Theory and algorithms , in Finite Element Methods for Navier–Stokes Equations,Springer Series in Computational Mathematics , Vol. 5 (Springer, 1986). Crossref, Google Scholar - 20. ,
For linear partial differential equations with generalized solutions , in Analysis of Finite Difference Schemes,Springer Series in Computational Mathematics , Vol. 46 (Springer, 2014). Crossref, Google Scholar - 21. , A grid method for the Navier–Stokes equations, Soviet Phys. Dokl. 11 (1966) 212–213. Google Scholar
- 22. , Non-oscillatory central schemes for the incompressible 2-D Euler equations, Math. Res. Lett. 4 (1997) 321–340. Crossref, Web of Science, Google Scholar
- 23. , Vorticity and Incompressible Flow,
Cambridge Texts in Applied Mathematics , Vol. 27 (Cambridge Univ. Press, 2002). Google Scholar - 24. , Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions, J. Comput. Phys. 231 (2012) 3365–3388. Crossref, Web of Science, Google Scholar
- 25. , Navier–Stokes Equations and Nonlinear Functional Analysis,
CBMS–NSF Regional Conference Series in Applied Mathematics , Vol. 41 (SIAM, 1983). Google Scholar - 26. , Solutions statistiques homogènes des systèmes differentiels paraboliques et du système de Navier–Stokes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 531–576. Google Scholar
- 27. , Long-term behaviour of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Engrg. 195 (2006) 5582–5596. Crossref, Web of Science, Google Scholar
- 28. , An adaptive stochastic finite element approach based on Newton-Cotes quadrature in simplex elements, Comput. Fluids 38 (2009) 1270–1288. Crossref, Web of Science, Google Scholar