World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Solvability analysis and numerical approximation of linearized cardiac electromechanics

    This paper is concerned with the mathematical analysis of a coupled elliptic–parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The problem consists in a reaction–diffusion system governing the dynamics of ionic quantities, intra- and extra-cellular potentials, and the linearized elasticity equations are adopted to describe the motion of an incompressible material. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diffusivities, we prove existence of weak solutions to the underlying coupled reaction–diffusion system and uniqueness of regular solutions. The proof of existence is based on a combination of parabolic regularization, the Faedo–Galerkin method, and the monotonicity-compactness method of Lions. A finite element formulation is also introduced, for which we establish existence of discrete solutions and show convergence to a weak solution of the original problem. We close with a numerical example illustrating the convergence of the method and some features of the model.

    AMSC: 74F99, 35K57, 92C10, 65M60

    References

    • R.   Aliev and A. V.   Panfilov , Chaos, Solitons Fractals   7 , 293 ( 1996 ) . Crossref, ISIGoogle Scholar
    • H. W.   Alt and S.   Luckhaus , Math. Z.   183 , 311 ( 1983 ) . Crossref, ISIGoogle Scholar
    • D.   Ambrosi et al. , SIAM J. Appl. Math.   71 , 605 ( 2011 ) . Crossref, ISIGoogle Scholar
    • D.   Ambrosi and S.   Pezzuto , J. Elasticity   107 , 199 ( 2012 ) . Crossref, ISIGoogle Scholar
    • B.   Andreianov et al. , Netw. Heterog. Media   6 , 195 ( 2011 ) . Crossref, ISIGoogle Scholar
    • J. M.   Ball , Arch. Rational Mech. Anal.   63 , 337 ( 1977 ) . Crossref, ISIGoogle Scholar
    • D.   Baroli , A.   Quarteroni and R.   Ruiz-Baier , Adv. Comput. Math.   39 , 425 ( 2013 ) . Crossref, ISIGoogle Scholar
    • M.   Bendahmane and K. H.   Karlsen , Netw. Heterog. Media   1 , 185 ( 2006 ) . Crossref, ISIGoogle Scholar
    • D. M.   Bers , Nature   415 , 198 ( 2002 ) . Crossref, ISIGoogle Scholar
    • R. M.   Bordas et al. , SIAM J. Appl. Math.   72 , 1618 ( 2012 ) . Crossref, ISIGoogle Scholar
    • M.   Boulakia et al. , Appl. Math. Res. Express AMRX   2 , 28 ( 2008 ) . Google Scholar
    • Y.   Bourgault , Y.   Coudière and C.   Pierre , Nonlinear Anal.: Real World Appl.   10 , 458 ( 2009 ) . Crossref, ISIGoogle Scholar
    • C.   Cherubini et al. , Progr. Biophys. Molec. Biol.   97 , 562 ( 2008 ) . Crossref, ISIGoogle Scholar
    • P. G.   Ciarlet , Mathematical Elasticity, Vol I: Three-Dimensional Elasticity ( North-Holland , 1978 ) . Google Scholar
    • P. Colli Franzone and G. Savaré, Evolution Equations, Semigroups and Functional Analysis, Progress in Nonlinear Differential Equations Application 50 (Birkhäuser, 2002) pp. 49–78. CrossrefGoogle Scholar
    • M.   Ethier and Y.   Bourgault , SIAM J. Numer. Anal.   46 , 2443 ( 2008 ) . Crossref, ISIGoogle Scholar
    • M.   Fernández and N.   Zemzemi , Math. Biosci.   226 , 58 ( 2010 ) . Crossref, ISIGoogle Scholar
    • R.   FitzHugh , Biophys. J.   1 , 445 ( 1961 ) . Crossref, ISIGoogle Scholar
    • S.   Göktepe and E.   Kuhl , Comput. Mech.   45 , 227 ( 2010 ) . Crossref, ISIGoogle Scholar
    • G. A.   Holzapfel and R. W.   Ogden , Philos. Trans. Roy. Soc. A   367 , 3445 ( 2009 ) . Crossref, ISIGoogle Scholar
    • N.   Hungerbühler , Duke Math. J.   107 , 497 ( 2001 ) . Crossref, ISIGoogle Scholar
    • P.   Krejčí et al. , Nonlinear Anal. Real World Appl.   7 , 535 ( 2006 ) . Crossref, ISIGoogle Scholar
    • A.   Laadhari , R.   Ruiz-Baier and A.   Quarteroni , Int. J. Numer. Methods Engrg.   96 , 712 ( 2013 ) . Crossref, ISIGoogle Scholar
    • P.   Lafortune et al. , Int. J. Numer. Methods Biomed. Engrg.   28 , 72 ( 2012 ) . Crossref, ISIGoogle Scholar
    • G. M.   Lieberman , Nonlinear Anal.   14 , 501 ( 1990 ) . Crossref, ISIGoogle Scholar
    • J.-L.   Lions , Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires ( Dunod , 1969 ) . Google Scholar
    • H.   Matano and Y.   Mori , Discrete Contin. Dynam. Syst.   29 , 1573 ( 2011 ) . Crossref, ISIGoogle Scholar
    • C. C.   Mitchell and D. G.   Schaeffer , Bull. Math. Biol.   65 , 767 ( 2003 ) . Crossref, ISIGoogle Scholar
    • J. S.   Nagumo , S.   Arimoto and S.   Yoshizawa , Proc. Inst. Radio Engrg.   50 , 2061 ( 1962 ) . Crossref, ISIGoogle Scholar
    • P.   Nardinocchi and L.   Teresi , J. Elasticity   88 , 27 ( 2007 ) . Crossref, ISIGoogle Scholar
    • M. P.   Nash and P. J.   Hunter , J. Elasticity   61 , 113 ( 2000 ) . Crossref, ISIGoogle Scholar
    • M. P.   Nash and A. V.   Panfilov , Progr. Biophys. Molec. Biol.   85 , 501 ( 2004 ) . Crossref, ISIGoogle Scholar
    • F.   Nobile , A.   Quarteroni and R.   Ruiz-Baier , Int. J. Numer. Meth. Biomed. Engrg.   28 , 52 ( 2012 ) . Crossref, ISIGoogle Scholar
    • D. A.   Nordsletten et al. , Progr. Biophys. Molec. Biol.   104 , 77 ( 2011 ) . Crossref, ISIGoogle Scholar
    • P.   Pathmanathan et al. , Quart. J. Mech. Appl. Math.   63 , 375 ( 2010 ) . Crossref, ISIGoogle Scholar
    • P. Pathmanathan, C Ortner and D. Kay, Existence of solutions of partially degenerate visco-elastic problems, and applications to modelling muscular contraction and cardiac electro-mechanical activity, submitted . Google Scholar
    • A.   Quarteroni and A.   Valli , Numerical Approximation of Partial Differential Equations , Springer Series in Computational Mathematics   23 ( Springer , 1994 ) . CrossrefGoogle Scholar
    • J. M.   Rogers and A. D.   McCulloch , IEEE Trans. Biomed. Engrg.   41 , 743 ( 1994 ) . Crossref, ISIGoogle Scholar
    • S.   Rossi et al. , Eur. J. Mech. A Solids   48 , 129 ( 2014 ) . Crossref, ISIGoogle Scholar
    • S.   Rossi et al. , Int. J. Numer. Meth. Biomed. Engrg.   28 , 761 ( 2012 ) . Crossref, ISIGoogle Scholar
    • O. Rousseau, Geometrical modeling of the heart, Ph.D. thesis, Université d'Ottawa (2010) . Google Scholar
    • R. Ruiz-Baieret al., Computer Models in Biomechanics: From Nano to Macro, eds. G. A. Holzapfel and E. Kuhl (Springer, 2013) pp. 189–201. CrossrefGoogle Scholar
    • R.   Ruiz-Baier et al. , Math. Med. Biol.   31 , 259 ( 2014 ) . Crossref, ISIGoogle Scholar
    • S.   Sanfelici , Numer. Methods Partial Differential Equations   18 , 218 ( 2002 ) . Crossref, ISIGoogle Scholar
    • J.   Sundnes et al. , Computing the Electrical Activity in the Heart , Monographs in Computational Science and Engineering   1 ( Springer , 2006 ) . Google Scholar
    • J.   Sundnes et al. , Comput. Meth. Biomech. Biomed. Engrg.   17 , 604 ( 2014 ) . Crossref, ISIGoogle Scholar
    • N. A.   Trayanova , Circ. Res.   108 , 113 ( 2011 ) . Crossref, ISIGoogle Scholar
    • L. Tung, A bidomain model for describing ischemic myocardial D–C potentials, Ph.D. thesis, MIT (1978) . Google Scholar
    • M.   Veneroni , Nonlinear Anal. Real World Appl.   10 , 849 ( 2009 ) . Crossref, ISIGoogle Scholar
    Published: 9 December 2014
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!