World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Maximal independent sets and regularity of graphs

    https://doi.org/10.1142/S0218196721500375Cited by:0 (Source: Crossref)

    In this paper, we give a lower bound of the number of maximal independent sets in a graph G in terms of the Castelnuovo–Mumford regularity of its edge ideal. We also find two classes of graphs achieving this minimum value.

    Communicated by J. McCullough

    AMSC: 05C30, 05D15

    References

    • 1. K. Cameron and T. Walker , The graphs with maximum induced matching and maximum matching the same size, Discrete Math. 299 (2005) 49–55. Crossref, Web of ScienceGoogle Scholar
    • 2. G. J. Chang and M. J. Jou , The number of maximal independent sets in connected triangle-free graphs, Discrete Math. 197–198 (1999) 169–178. Crossref, Web of ScienceGoogle Scholar
    • 3. A. Constantinescu and M. Varbaro , Koszulness, Krull dimension, and other properties of graph related algebras, J. Algebraic Combin. 34 (2011) 375–400. Crossref, Web of ScienceGoogle Scholar
    • 4. H. Dao, C. Huneke and J. Schweig , Bounds on the regularity and projective dimension of ideals associated to graphs, J. Algebr. Comb. 38(1) (2013) 37–55. Crossref, Web of ScienceGoogle Scholar
    • 5. D. Eisenbud , Commutative Algebra: With a View Toward Algebraic Geometry (Springer-Verlag, New York, 1995). CrossrefGoogle Scholar
    • 6. Z. Füredi , The number of maximal independent sets in connected graphs, J. Graph Theory 11 (1987) 463–470. Crossref, Web of ScienceGoogle Scholar
    • 7. J. R. Griggs, C. M. Grinstead and D. R. Guichard , The number of maximal independent sets in a connected graph, Discrete Math. 68 (1988) 211–220. Crossref, Web of ScienceGoogle Scholar
    • 8. H. T. Hà, Regularity of squarefree monomial ideals, in Connections Between Algebra, Combinatorics, and Geometry, eds. S. M. Cooper and S. Sather-Wagstaff, Springer Proceedings in Mathematics & Statistics, Vol. 76 (2014), pp. 251–276. Google Scholar
    • 9. H. T. Hà and A. Van Tuyl , Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin. 27(2) (2008) 215–245. Crossref, Web of ScienceGoogle Scholar
    • 10. T. Hibi, A. Higashitani, K. Kimura and A. B. O’Keefe , Algebraic study on Cameron–Walker graphs, J. Algebra 422 (2015) 257–269. Crossref, Web of ScienceGoogle Scholar
    • 11. L. T. Hoa and N. V. Trung , On the Castelnuovo–Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229(3) (1998) 519–537. Crossref, Web of ScienceGoogle Scholar
    • 12. D. T. Hoang and T. N. Trung , Coverings, matchings and the number of maximal independent sets of graphs, Australas. J. Combin. 73 (2019) 424–431. Web of ScienceGoogle Scholar
    • 13. M. Hujter and Z. Tuza , The number of maximal independent sets in triangle-free graphs, SIAM J. Discrete Math. 6 (1993) 284–288. Crossref, Web of ScienceGoogle Scholar
    • 14. M. Katzman , Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113(3) (2006) 435–454. Crossref, Web of ScienceGoogle Scholar
    • 15. J. Liu , Maximal independent sets in bipartite graphs, J. Graph Theory 17 (1993) 495–507. Crossref, Web of ScienceGoogle Scholar
    • 16. J. W. Moon and L. Moser , On cliques in graphs, Israel J. Math. 3 (1965) 23–28. Crossref, Web of ScienceGoogle Scholar
    • 17. S. A. Seyed Fakhari and S. Yassemi , Improved bounds for the regularity of edge ideals of graphs, Collect. Math. 69(2) (2018) 249–262. Crossref, Web of ScienceGoogle Scholar
    • 18. T. N. Trung , Regularity, matchings and Cameron–Walker graphs, Collect. Math. 71(1) (2020) 83–91. Crossref, Web of ScienceGoogle Scholar
    • 19. A. Van Tuyl and R. H. Villarreal , Shellable graphs and sequentially Cohen Macaulay bipartite graphs, J. Combin. Theory Ser. A 115(5) (2008) 799–814. Crossref, Web of ScienceGoogle Scholar
    • 20. R. Villarreal , Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 238 (Marcel Dekker, New York, 2001). Google Scholar
    • 21. H. S. Wilf , The number of maximal independent sets in a tree, SIAM J. Algebraic Discrete Methods 7 (1986) 125–130. Crossref, Web of ScienceGoogle Scholar
    • 22. R. Woodroofe , Matchings, coverings, and Castelnuovo–Mumford regularity, J. Commut. Algebra 6 (2014) 287–304. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out Algebra & Computation books in the Mathematics 2021 catalogue.