World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Möbius function of PSL(3,2p) for any prime p by:0 (Source: Crossref)
    This article is part of the issue:

    Let G be the simple group PSL(3,2p), where p is a prime number. For any subgroup H of G, we compute the Möbius function μ(H) of H in the subgroup lattice of G. To this aim, we describe the intersections of maximal subgroups of G. We point out some connections of the Möbius function with other combinatorial objects, and, in this context, we compute the reduced Euler characteristic of the order complex of the subposet of r-subgroups of PGL(3,q), for any prime r and any prime power q.

    Communicated by all the special editors

    AMSC: 05E16, 20D30, 20D06


    • 1. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symb. Comput. 24(2–3) (1997) 235–265. Crossref, Web of ScienceGoogle Scholar
    • 2. J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Vol. 407 (Cambridge University Press, 2013). CrossrefGoogle Scholar
    • 3. A. Castillo-Ramirez and M. Gadouleau, Cellular automata and finite groups, Nat. Comput. 18(3) (2019) 445–458. Crossref, Web of ScienceGoogle Scholar
    • 4. V. Colombo and A. Lucchini, On subgroups with non-zero Möbius numbers in the alternating and symmetric groups, J. Algebra 324(9) (2010) 2464–2474. Crossref, Web of ScienceGoogle Scholar
    • 5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups (Clarendon Press, Oxford, 1985). Google Scholar
    • 6. M. Downs, The Möbius function of PSL2(q), with application to the maximal normal subgroups of the modular group, J. London Math. Soc. 43 (1991) 61–75. Crossref, Web of ScienceGoogle Scholar
    • 7. M. Downs and G. A. Jones, Möbius inversion in Suzuki groups and enumeration of regular objects, Symmetries in Graphs, Maps, and Polytopes, Springer Proceedings in Mathematics and Statistics, Vol. 159 (Springer, Cham, 2016), pp. 97–127. CrossrefGoogle Scholar
    • 8. P. Hall, The Eulerian functions of a group, Quart. J. Math. 7(1) (1936) 134–151. CrossrefGoogle Scholar
    • 9. R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the GF(2n), Ann. Math. Second Ser. 27(2) (1925) 140–158. CrossrefGoogle Scholar
    • 10. D. Hughes and F. C. Piper, Projective Planes, Graduate Texts in Mathematics, Vol. 6 (Springer-Verlag, Berlin, 1973). Google Scholar
    • 11. O. H. King, The subgroup structure of the finite classical groups in terms of geometric configurations, Survey in combinatorics 2005, London Mathematics Society Lecture Note Series Vol. 327 (Cambridge University Press, Cambridge, 2005), pp. 29–56. CrossrefGoogle Scholar
    • 12. J. B. Liu, J. Lee and J. H. Kwak, Enumerating regular graph coverings whose covering transformation groups are 2-extensions of a cyclic group, Ars Math. Contemp. 15(1) (2018) 205–223. Crossref, Web of ScienceGoogle Scholar
    • 13. A. Lucchini, On the subgroups with non-trivial Möbius number, J. Group Theory 13 (2010) 589–600. Crossref, Web of ScienceGoogle Scholar
    • 14. A. Mann, Positively finitely generated groups, Forum Math. 8(4) (1996) 429–459. Crossref, Web of ScienceGoogle Scholar
    • 15. A. Mann, A probabilistic zeta function for arithmetic groups, Int. J. Algebra Comput. 15(5–6) (2005) 1053–1059. Link, Web of ScienceGoogle Scholar
    • 16. H. H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12(2) (1911) 207–242. CrossrefGoogle Scholar
    • 17. E. Pierro, The Möbius function of the small Ree groups, Australas. J. Combin. 66(2) (2016) 142–176. Google Scholar
    • 18. D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28(2) (1978) 101–128. Crossref, Web of ScienceGoogle Scholar
    • 19. R. P. Stanley, Enumerative Combinatorics, Vol. 1, 2nd edn., Cambridge Studies in Advanced Mathematics, Vol. 49 (Cambridge University Press, Cambridge, 2012). Google Scholar
    • 20. L. Weisner, Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38(3) (1935) 474–484. CrossrefGoogle Scholar
    • 21. G. Zini, The Möbius function of PSU(3,22n), Ars Math. Contemp. 16(2) (2019) 377–401. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out Algebra & Computation books in the Mathematics 2021 catalogue.