World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

LEFT ADEQUATE AND LEFT EHRESMANN MONOIDS

    https://doi.org/10.1142/S0218196711006935Cited by:11 (Source: Crossref)

    This is the first of two articles studying the structure of left adequate and, more generally, of left Ehresmann monoids. Motivated by a careful analysis of normal forms, we introduce here a concept of proper for a left adequate monoid M. In fact, our notion is that of T-proper, where T is a submonoid of M. We show that any left adequate monoid M has an X*-proper cover for some set X, that is, there is a left adequate monoid that is X*-proper, and an idempotent separating surjective morphism of the appropriate type. Given this result, we may deduce that the free left adequate monoid on any set X is X*-proper. In a subsequent paper, we show how to construct T-proper left adequate monoids from any monoid T acting via order-preserving maps on a semilattice with identity, and prove that the free left adequate monoid is of this form. An alternative description of the free left adequate monoid will appear in a paper of Kambites. We show how to obtain the labeled trees appearing in his result from our structure theorem. Our results apply to the wider class of left Ehresmann monoids, and we give them in full generality. We also indicate how to obtain some of the analogous results in the two-sided case. This paper and its sequel, and the two of Kambites on free (left) adequate semigroups, demonstrate the rich but accessible structure of (left) adequate semigroups and monoids, introduced with startling insight by Fountain some 30 years ago.

    References

    Remember to check out the Most Cited Articles!

    Check out Algebra & Computation books in the Mathematics 2021 catalogue.