OMITTING TYPES, BOUNDED WIDTH AND THE ABILITY TO COUNT
Abstract
We say that a finite algebra 𝔸 = 〈A; F〉 has the ability to count if there are subalgebras C of 𝔸3 and Z of 𝔸 such that the structure 〈A; C, Z〉 has the ability to count in the sense of Feder and Vardi. We show that for a core relational structure A the following conditions are equivalent: (i) the variety generated by the algebra 𝔸 associated to A contains an algebra with the ability to count; (ii) 𝔸2 has the ability to count; (iii) the variety generated by 𝔸 admits the unary or affine type. As a consequence, for CSP's of finite signature, the bounded width conjectures stated in Feder–Vardi [10], Larose–Zádori [17] and Bulatov [5] are identical.
References
F. Afrati , S. S. Cosmadakis and M. Yannakakis , On Datalog vs. polynomial time, Proc. 10th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1991) pp. 13–25. Google ScholarA. Atserias , A. Bulatov and A. Dawar , Affine systems of equations and counting infinitary logic, ICALP'074596,LNCS (2007) pp. 558–570. Google Scholar- L. Barto and M. Kozik, Constraint Satisfaction Problems of Bounded Width, manuscript, January 2009 . Google Scholar
- Discrete Math. 112(3), 1 (1993), DOI: 10.1016/0012-365X(93)90219-J. Crossref, Web of Science, Google Scholar
A. Bulatov , A graph of a relational structure and constraint satisfaction problems, LICS'04 (2004) pp. 448–457. Google ScholarA. Bulatov , A. Krokhin and B. Larose , Complexity of Constraints,LNCS 5250 (2008) pp. 93–124. Crossref, Google ScholarA. Bulatov and M. Valeriote , Complexity of Constraints,LNCS 5250 (2008) pp. 68–92. Crossref, Google Scholar- Logical Methods in Computer Science 1(1), (2005), DOI: 10.2168/LMCS-1(1:5)2005. Google Scholar
T. Feder and M. Y. Vardi , Monotone monadic SNP and constraint satisfaction, Proc. of the 25rd Annual ACM Symposium on Theory of Computing (STOC) (1993) pp. 612–622. Google Scholar- SIAM J. Comput. 28, 57 (1998), DOI: 10.1137/S0097539794266766. Crossref, Web of Science, Google Scholar
-
R. Freese and R. McKenzie , Commutator Theory for Congruence Modular Varieties ,London Mathematical Society Lecture Note Series 125 ( Cambridge Universit Press , 1987 ) . Google Scholar - Contemp. Math. (1988). Google Scholar
- J. Comput. System Sci. 51, 110 (1995), DOI: 10.1006/jcss.1995.1055. Crossref, Web of Science, Google Scholar
B. Larose and L. Haddad , Colourings of hypergraphs, permutation groups ans CSP's, Logic Colloquium '0427,Lect. Notes Log (2008) pp. 93–108. Google Scholar- Logical Methods in Computer Science 3(4), (2007), DOI: 10.2168/LMCS-3(4:6)2007. Google Scholar
- Theoret. Comput. Sci. 410, 1629 (2009), DOI: 10.1016/j.tcs.2008.12.048. Crossref, Web of Science, Google Scholar
- Algebra Universalis 56(4), 439 (2007), DOI: 10.1007/s00012-007-2012-6. Crossref, Web of Science, Google Scholar
-
L. Libkin , Elements of Finite Model Theory ( Springer , 2004 ) . Crossref, Google Scholar - Math. Notes 37(6), 485 (1985). Crossref, Web of Science, Google Scholar
Á. Szendrei , Research and Exposition in Mathematics (Heldermann Verlag, 1992) pp. 209–239. Google Scholar- J. Austral. Math. Soc. Ser. A 48(3), 434 (1990), DOI: 10.1017/S1446788700029979. Crossref, Google Scholar
-
Á. Szendrei , Seminaires de Mathematiques Superieures 99 ( University of Montreal , 1986 ) . Google Scholar - Canadian J. Math. 18 . Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out Algebra & Computation books in the Mathematics 2021 catalogue. |