CRITICAL POINTS OF PAIRS OF VARIETIES OF ALGEBRAS
Abstract
For a class of algebras, denote by Conc the class of all (∨, 0)-semilattices isomorphic to the semilattice ConcA of all compact congruences of A, for some A in . For classes and of algebras, we denote by the smallest cardinality of a (∨, 0)-semilattices in Conc which is not in Conc if it exists, ∞ otherwise. We prove a general theorem, with categorical flavor, that implies that for all finitely generated congruence-distributive varieties and , is either finite, or ℵn for some natural number n, or ∞. We also find two finitely generated modular lattice varieties and such that , thus answering a question by J. Tůma and F. Wehrung.
This paper is a part of the author's "Doctorat de l'université de Caen", prepared under the supervision of Friedrich Wehrung.
References
- Proc. Imp. Acad. Tokyo 18, 553 (1942), DOI: 10.3792/pia/1195573786. Google Scholar
-
G. Grätzer , Universal Algebra ( D. Van Nostrand Co., Inc. , Princeton, NJ., Toronto, Ontario, London , 1968 ) . Google Scholar - Pacific J. Math. 103, 475 (1982). Web of Science, Google Scholar
- Algebra Universalis 54, 249 (2005), DOI: 10.1007/s00012-005-1931-3. Web of Science, Google Scholar
- Colloq. Math. 83, 71 (2000). Google Scholar
- Topol. Appl. 131, 1 (2003). Web of Science, Google Scholar
- Colloq. Math. 76(2), 269 (1998). Google Scholar
- Algebra Universalis 48(4), 439 (2002), DOI: 10.1007/s000120200011. Web of Science, Google Scholar
- Int. J. Algebra Comput. 16(3), 541 (2006), DOI: 10.1142/S0218196706003049. Link, Web of Science, Google Scholar
- Adv. Math. 216(2), 610 (2007), DOI: 10.1016/j.aim.2007.05.016. Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out Algebra & Computation books in the Mathematics 2021 catalogue. |