A FAST ALGORITHM FOR STALLINGS' FOLDING PROCESS
Abstract
Stalling's folding process is a key algorithm for solving algorithmic problems for finitely generated subgroups of free groups. Given a subgroup H = 〈J1,…,Jm〉 of a finitely generated nonabelian free group F = F(x1,…,xn) the folding porcess enables one, for example, to solve the membership problem or compute the index [F : H]. We show that for a fixed free group F and an arbitrary finitely generated subgroup H (as given above) we can perform the Stallings' folding process in time O(N log*(N)), where N is the sum of the word lengths of the given generators of H.
References
-
T. H. Cormen , Introduction to Algorithms , 2nd edn. ( MIT Press , 2001 ) . Google Scholar - J. Algebra 248(2), 608 (2002), DOI: 10.1006/jabr.2001.9033. Crossref, ISI, Google Scholar
-
C. C. Sims , Computation with Finitely Presented Groups ( Cambridge University Press , Cambridge , 1994 ) . Crossref, Google Scholar - Invent. Math. 71, 551 (1983), DOI: 10.1007/BF02095993. Crossref, ISI, Google Scholar
J. R. Stallings and A. R. Wolf , Combinatorial Group Theory and Topology (Princeton University Press, Princeton, 1987) pp. 157–161. Crossref, Google Scholar- Geom. Topol. (Coventry) 139 (1998), DOI: 10.2140/gtm.1998.1.139. Google Scholar
-
J. A. Bondy and U. S. R. Murty , Graph Theory with Applications ( American Elsevier , New York , 1976 ) . Crossref, Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Check out Algebra & Computation books in the Mathematics 2021 catalogue. |


