Spanning Properties of Yao and -Graphs in the Presence of Constraints
Abstract
We present improved upper bounds on the spanning ratio of constrained -graphs with at least 6 cones and constrained Yao-graphs with 5 or at least 7 cones. Given a set of points in the plane, a Yao-graph partitions the plane around each vertex into disjoint cones, each having aperture , and adds an edge to the closest vertex in each cone. Constrained Yao-graphs have the additional property that no edge properly intersects any of the given line segment constraints. Constrained -graphs are similar to constrained Yao-graphs, but use a different method to determine the closest vertex.
We present tight bounds on the spanning ratio of a large family of constrained -graphs. We show that constrained -graphs with ( and integer) cones have a tight spanning ratio of , where is . We also present improved upper bounds on the spanning ratio of the other families of constrained -graphs. These bounds match the current upper bounds in the unconstrained setting.
We also show that constrained Yao-graphs with an even number of cones () have spanning ratio at most and constrained Yao-graphs with an odd number of cones () have spanning ratio at most . As is the case with constrained -graphs, these bounds match the current upper bounds in the unconstrained setting, which implies that like in the unconstrained setting using more cones can make the spanning ratio worse.
Extended abstracts containing results in this paper appeared in LATIN 2014 and CCCG 2014.
Communicated by J. S. B. Mitchell
References
- 1. , Theta-3 is connected, Computational Geometry: Theory and Applications Special Issue for CCCG 2013 47(9) (2014) 910â917. Google Scholar
- 2. , On sparse spanners of weighted graphs, Discr. Comput. Geom. 9(1) (1993) 81â100. Web of Science, Google Scholar
- 3. , New and improved spanning ratios for Yao graphs, J. Comput. Geom. Special Issue for SoCG 2014 6(2) (2015) 19â53. Google Scholar
- 4. , On the stretch factor of the theta-4 graph, in Proc. 13th Algorithms and Data Structures Symposium (WADS 2013), Vol. 8037,
Lecture Notes in Computer Science (2013), pp. 109â120. Google Scholar - 5. P. Bose et al., -angle Yao graphs are spanners, arXiv e-prints, 2010, arXiv:1001.2913 [cs.CG]. Google Scholar
- 6. , -angle Yao graphs are spanners, Int. J. Comput. Geom. Appl. 22(1) (2012) 61â82. Link, Web of Science, Google Scholar
- 7. , Towards tight bounds on theta-graphs: More is not always better, Theor. Comput. Sci. 616 (2016) 70â93. Web of Science, Google Scholar
- 8. , On plane constrained bounded-degree spanners, Algorithmica 81(4) (2019) 1392â1415. Web of Science, Google Scholar
- 9. , On the stretch factor of the constrained Delaunay triangulation, in Proc. 3rd International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2006) (2006), pp. 25â31. Google Scholar
- 10. , Approximating geometric bottleneck shortest paths, Computational Geometry: Theory and Applications 29(3) (2004) 233â249. Web of Science, Google Scholar
- 11. , The -graph is a spanner, Computational Geometry: Theory and Applications 48(2) (2015) 108â119. Web of Science, Google Scholar
- 12. , On plane geometric spanners: A survey and open problems, Computational Geometry: Theory and Applications 46(7) (2013) 818â830. Web of Science, Google Scholar
- 13. , Approximation algorithms for shortest path motion planning, in Proc. 19th Annual ACM Symposium on Theory of Computing (STOC 1987) (1987), pp. 56â65. Google Scholar
- 14. , Yao graphs span theta graphs, Discr. Math. Algorith. Appl. 4(02) (2012) 1250024, 16 pp. Google Scholar
- 15. , The visibility graph contains a bounded-degree spanner, in Proc. 9th Canadian Conference on Computational Geometry (CCCG 1997) (1997), pp. 70â75. Google Scholar
- 16. N. M. El Molla, Yao spanners for wireless ad hoc networks, Masterâs thesis, Villanova University (2009). Google Scholar
- 17. , Strong connectivity in directional nearest-neighbor graphs, SIAM J. Algebraic Discr. Meth. 2(4) (1981) 461â463. Web of Science, Google Scholar
- 18. Darryl Hill, Personal communication (2017). Google Scholar
- 19. , Approximating the complete Euclidean graph, in Proc. 1st Scandinavian Workshop on Algorithm Theory (SWAT 1988) (1988), pp. 208â213. Google Scholar
- 20. , Geometric Spanner Networks (Cambridge University Press, 2007). Google Scholar
- 21. , Approximating the -dimensional complete Euclidean graph, in Proc. 3rd Canadian Conference on Computational Geometry (CCCG 1991) (1991), pp. 207â210. Google Scholar
- 22. , On constructing minimum spanning trees in -dimensional spaces and related problems, SIAM J. Comput. 11(4) (1982) 721â736. Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out these titles in image analysis! |