World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE VIABILITY OF FUZZY LOGIC MODELING IN SOFTWARE DEVELOPMENT EFFORT ESTIMATION: OPINIONS AND EXPECTATIONS OF PROJECT MANAGERS

    There is a growing body of evidence to suggest that significant benefits may be gained from augmenting current approaches to software development effort estimation, and indeed other project management activities, with models developed using fuzzy logic and other soft computing methods. The tasks undertaken by project managers early in a development process would appear to be particularly amenable to such a strategy, particularly if fuzzy logic models are used in a complementary manner with other algorithmic approaches, thus providing a range of predictions as opposed to a single point value. As well as providing a more intuitively acceptable set of estimates, this would help to reduce or remove the unwarranted level of certainty associated with a point estimate. Furthermore, such an approach would enable organizations to "store" their project management knowledge, making them less susceptible to employee resignations and the like. If fuzzy logic modeling is to be implemented in industry, however, managers must first believe it to be a realistic and workable option. This issue is addressed here by considering two related questions: one, what expectations do project managers have in relation to effort estimation? And two, what is their opinion of the methods that might be useful in this regard? This is followed by a discussion of the results of two surveys of project managers aimed at deriving membership functions using polling methods, the first using an interval declaration approach and the second using votes on fixed points. It is concluded that there is indeed support in the software engineering practitioner community for the use of methods based on the principles of fuzzy logic modeling.

    An earlier version of part of this paper appeared in the Proceedings of the ICONIP/ANZIIS/ANNES'99 International Workshop on Future Directions for Intelligent Systems and Information Sciences.

    References

    • M. A. Ahmed, M. Omolade Saliu and J. AlGhamdi, Information and Software Technology 47, 31 (2005). Crossref, ISIGoogle Scholar
    • A. J. Albrecht and J. E. Gaffney Jr., IEEE Trans. on Software Engineering 9(6), 639 (1983). ISIGoogle Scholar
    • L. Angelis and I. Stamelos, Empirical Software Engineering 5, 35 (2000). CrossrefGoogle Scholar
    • N. Bilaliset al., Proc. 2002 Int. Engineering Management Conference (IEEE, 2002) pp. 485–490. Google Scholar
    • B. W.   Boehm , Software Engineering Economics ( Prentice Hall , Englewood Cliffs , 1981 ) . Google Scholar
    • B. W. Boehm and K. Sullivan, Information and Software Technology 41, 937 (1999). Crossref, ISIGoogle Scholar
    • L. C. Briand, Proc. 14th Int. Conf. on Software Engineering and Knowledge Engineering, Ischia, Italy (ACM, 2002) pp. 3–6. Google Scholar
    • S. D.   Conte , H. E.   Dunsmore and V. Y.   Shen , Software Engineering Metrics and Models ( Benjamin/Cummings , Menlo Park , 1986 ) . Google Scholar
    • D.   Dubois and H.   Prade , Fuzzy Sets and Systems: Theory and Applications ( Academic Press , London , 1980 ) . Google Scholar
    • M. E. Fayad, M. Laitinen and R. P. Ward, Communications of the ACM 43(3), 115 (2000). Crossref, ISIGoogle Scholar
    • N. E. Fenton and M. Neil, Journal of Systems and Software 47, 149 (1999). Crossref, ISIGoogle Scholar
    • G. R. Finnie, G. E. Wittig and J.-M. Desharnais, Journal of Systems and Software 39, 281 (1997). Crossref, ISIGoogle Scholar
    • A. R. Gray and S. G. MacDonell, Proc. 1997 Annual Meeting of the North American Fuzzy Information Processing Society (IEEE Computer Society Press, 1997) pp. 394–399. Google Scholar
    • A. R. Gray and S. G. MacDonell, Proc. 1999 Annual Meeting of the North American Fuzzy Information Processing Society (IEEE Computer Society Press, 1999) pp. 258–262. Google Scholar
    • M. Hapke, A. Jaszkiewicz and R. Slowinski, Fuzzy Sets and Systems 67, 101 (1994). Crossref, ISIGoogle Scholar
    • W. Herroelen and R. Leus, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research (in press) . Google Scholar
    • X. Huanget al., Proc. Third Int. Conf. on Quality Software (IEEE Computer Society Press, 2003) pp. 126–133. CrossrefGoogle Scholar
    • A. Idri and A. Abran, Proc. 7th Int. Symp. on Software Metrics, London (IEEE Computer Society Press, 2001) pp. 85–96. Google Scholar
    • A. Idri, A. Abran and L. Kjiri, COCOMO cost model using fuzzy logic, in Proc. 7th Int. Conf. on Fuzzy Theory and Technology, Atlantic City NJ, 2000, pp. 1–4 . Google Scholar
    • A. Idri, A. Abran and T. M. Khoshgoftaar, Proc. 8th Int. Symp. on Software Metrics, Ottawa, Ontario, Canada (IEEE Computer Society Press, 2002) pp. 21–30. CrossrefGoogle Scholar
    • A. Idri, T. M. Khoshgoftaar and A. Abran, Can neural networks be easily interpreted in software cost estimation? in Proc. 2002 World Congress on Computational Intelligence, Honolulu, Hawaii, 2002, pp. 1162–1167 . Google Scholar
    • T. M. Khoshgoftaar and E. B. Allen, Computational Intelligence in Software Engineering, eds. W. Pedrycz and J. F. Peters (World Scientific, 1998) pp. 33–64. LinkGoogle Scholar
    • B. Kitchenham, The certainty of uncertainty, in Proc. European Software Measurement Conference FESMA'98, Antwerp, Belgium, 1998, pp. 17–25 . Google Scholar
    • G. J.   Klir and B.   Yuan , Fuzzy Sets and Fuzzy Logic: Theory and Applications ( Prentice Hall , Englewood Cliffs , 1995 ) . Google Scholar
    • S. Kumar, B. A. Krishna and P. S. Satsangi, Journal of Applied Intelligence 4, 31 (1994). Crossref, ISIGoogle Scholar
    • A. L. Lederer and J. Prasad, Journal of Systems and Software 50, 33 (2000). Crossref, ISIGoogle Scholar
    • A. Lee, C. H. Cheng and J. Balakrishnan, Information & Management 34, 1 (1998). ISIGoogle Scholar
    • J.-Q. Li and Y.-S. Fan, Proc. 1st Int. Conf. on Machine Learning and Cybernetics, Beijing, China (IEEE, 2002) pp. 1489–1492. Google Scholar
    • O. de S. Lima Jr., P. P. M. Farias and A. D. Belchior, Software Quality Journal 11, 149 (2003). ISIGoogle Scholar
    • C.-T. Lin and Y.-T. Chen, Int. J. Project Management 22, 585 (2004). CrossrefGoogle Scholar
    • X. Liu, G. Kane and M. Bambroo, Proc. 15th IEEE Int. Conf. on Tools with Artificial Intelligence (IEEE Computer Society, 2003) pp. 32–38. Google Scholar
    • S. G. MacDonell, Information and Software Technology 45(7), 389 (2004). Crossref, ISIGoogle Scholar
    • S. G. MacDonell, A. R. Gray and J. M. Calvert, Proc. 1999 Annual Meeting of the North American Fuzzy Information Processing Society (IEEE Computer Society Press, 1999) pp. 263–267. Google Scholar
    • S. G. MacDonell, A. R. Gray and J. M. Calvert, Proc. 6th Int. Conf. on Neural Information Processing ICONIP'99, ANZIIS'99, ANNES'99, and ACNN'99, Perth, Western Australia (IEEE Computer Society Press, 1999) pp. 308–313. CrossrefGoogle Scholar
    • R. J. Madachy, IEEE Software 51 (1997). Google Scholar
    • P. Musíleket al., ACM SIGAPP Applied Computing Review 8(2), 24 (2000). CrossrefGoogle Scholar
    • I. Myrtveit and E. Stensrud, IEEE Trans. on Software Engineering 25(4), 510 (1999). Crossref, ISIGoogle Scholar
    • M. C. Ohlsson, C. Wohlin and B. Regnell, Information and Software Technology 40, 831 (1998). Crossref, ISIGoogle Scholar
    • L. Özdamar and E. Alanya, Annals of Operations Research 102, 157 (2001). Crossref, ISIGoogle Scholar
    • H. Pan, C.-H. Yeh and R. J. Willis, Proc. IEEE Int. Fuzzy Systems Conference (IEEE Computer Society Press, 2001) pp. 1376–1379. Google Scholar
    • M. J. Pazzani, IEEE Intelligent Systems 10 (2000). Google Scholar
    • G. Peeters and G. Dewey, CrossTalk — The Journal of Defense Software Engineering 20 (2000). Google Scholar
    • L. H. Putnam and W. Myers, IEEE Software 105 (1997). Google Scholar
    • A. Raman and A. Noore, Proc. 35th Southeastern Symposium on System Theory (IEEE, 2003) pp. 74–78. CrossrefGoogle Scholar
    • M. Reformat, W. Pedrycz and N. Pizzi, Fuzzy Sets and Systems 145, 111 (2004). Crossref, ISIGoogle Scholar
    • J. Ryder, Proc. IEEE Information Technology Conference (IEEE, 1998) pp. 53–56. Google Scholar
    • B. Samson, D. Ellison and P. Dugard, Information and Software Technology 39, 55 (1997). Crossref, ISIGoogle Scholar
    • U. Z. Sanal, Proc. IEEE AUTOTESTCON (IEEE, 2000) pp. 263–272. Google Scholar
    • V. L. Sauter, Communications of the ACM 42(6), 109 (1999). Crossref, ISIGoogle Scholar
    • M. Shepperd and M. Cartwright, IEEE Trans. on Software Engineering 27(11), 987 (2001). Crossref, ISIGoogle Scholar
    • M. Shepperd and C. Schofield, IEEE Trans. on Software Engineering 23(12), 736 (1997). Crossref, ISIGoogle Scholar
    • M. Shin and A. L. Goel, IEEE Trans. on Software Engineering 26(6), 567 (2000). Crossref, ISIGoogle Scholar
    • M. F. Shipley, A. de Korvin and K. Omer, Journal of Engineering and Technology Management 14, 49 (1997). Crossref, ISIGoogle Scholar
    • E.   Stensrud and I.   Myrtveit , Proc. 5th Int. Symp. on Software Metrics, Bethesda, MD ( IEEE Computer Society Press , 1998 ) . Google Scholar
    • L. Tian and A. Noore, Proc. 35th Southeastern Symposium on System Theory (IEEE, 2003) pp. 232–236. CrossrefGoogle Scholar
    • USC COCOMO II Model Definition Manual, version 1.4, University of Southern California, 1997 . Google Scholar
    • F. Walkerden and R. Jeffery, Empirical Software Engineering 4, 135 (1999). CrossrefGoogle Scholar
    • G. E. Wittig and G. R. Finnie, Australian Journal of Information Systems 1(2), 87 (1994). ISIGoogle Scholar
    • Z. Xu and T. M. Khoshgoftaar, Fuzzy Sets and Systems 145, 141 (2004). Crossref, ISIGoogle Scholar
    • R. R.   Yager and D. P.   Filev , Essentials of Fuzzy Modeling and Control ( Wiley , New York , 1994 ) . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in C++ Programming!