SYNCHRONIZING HIGH DIMENSIONAL CHAOTIC SYSTEMS VIA EIGENVALUE PLACEMENT WITH APPLICATION TO CELLULAR NEURAL NETWORKS
Abstract
In this paper a method for synchronizing high dimensional chaotic systems is developed. The objective is to generate a linear error dynamics between the master and the slave systems, so that synchronization is achievable by exploiting the controllability property of linear systems. The suggested approach is applied to Cellular Neural Networks (CNNs), which can be considered as a tool for generating complex hyperchaotic behaviors. Numerical simulations are carried out for synchronizing CNNs constituted by Chua's circuits.



