World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

A 3D Nonlinear Filippov System with a Symmetric Pair of T-Singularities

    https://doi.org/10.1142/S0218127425500464Cited by:0 (Source: Crossref)

    Teixeira singularity (TS) is the transverse intersection point of invisible quadratic tangency lines in 3D piecewise-smooth systems, which significantly impacts both local and global dynamics. This paper considers the 3D nonlinear Filippov system composed of Yang system and Sprott-C system with a symmetric pair of TSs. In parameters space, this Filippov system exhibits rich bifurcation phenomena, such as the boundary equilibrium bifurcations and a symmetric pair of sliding transcritical bifurcations. By constructing the Poincaré map and analyzing the number of fixed points, we present the conditions for the existence of crossing limit cycles. Furthermore, we observe the phenomenon of compound bifurcation occurring at TS, namely the TS bifurcation. This bifurcation results from the combination of transcritical bifurcation of sliding dynamics and Bogdanov–Takens bifurcation of crossing dynamics. Finally, a new chaotic attractor, which consistently surrounds two TSs, is found through numerical analysis.

    References

    • Bernardo, M., Budd, C., Champneys, A. R. & Kowalczyk, P. [2008] Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer-Verlag, London). Google Scholar
    • Cang, S., Li, Y., Zhang, R. & Wang, Z. [2019] “Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points,” Nonlin. Dyn. 95, 381–390. Crossref, Web of ScienceGoogle Scholar
    • Castillo, J. [2020] “The pseudo-Hopf bifurcation and derived attractors in 3D Filippov linear systems with a Teixeira singularity,” Chaos 30, 113101. Crossref, Web of ScienceGoogle Scholar
    • Castillo, J. & Verduzco, F. [2022] “Pseudo-Bautin bifurcation in 3D Filippov systems,” Int. J. Bifurcation and Chaos 32, 2250120. Link, Web of ScienceGoogle Scholar
    • Čelikovskỳ, S. & Vaněček, A. [1994] “Bilinear systems and chaos,” Kybernetika 30, 403–424. Web of ScienceGoogle Scholar
    • Chen, G. & Ueta, T. [1999] “Yet another chaotic attractor,” Int. J. Bifurcation and Chaos 09, 1465–1466. Link, Web of ScienceGoogle Scholar
    • Colombo, A. & Jeffrey, M. R. [2011] “Nondeterministic chaos, and the two-fold singularity in piecewise smooth flows,” SIAM J. Appl. Dyn. Syst. 10, 423–451. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Pagano, D. J., Freire, E. & Ponce, E. [2018] “Revisiting the Teixeira singularity bifurcation analysis: Application to the control of power converters,” Int. J. Bifurcation and Chaos 28, 1850106. Link, Web of ScienceGoogle Scholar
    • Cristiano, R. & Pagano, D. J. [2019] “Two-parameter boundary equilibrium bifurcations in 3D-Filippov systems,” J. Nonlin. Sci. 29, 2845–2875. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Pagano, D. J., Carvalho, T. & Tonon, D. J. [2019a] “Bifurcations at a degenerate two-fold singularity and crossing limit cycles,” J. Differ. Equ. 268, 115–140. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Ponce, E., Pagano, D. J. & Granzotto, M. [2019b] “On the Teixeira singularity bifurcation in a DC–DC power electronic converter,” Nonlin. Dyn. 96, 1243–1266. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Pagano, D. J., Tonon, D. J. & Carvalho, T. [2020] “Fold bifurcation of T-singularities and invariant manifolds in 3D piecewise-smooth dynamical systems,” Physica D 403, 132293. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., Tonon, D. J. & Velter, M. Q. [2021] “Hopf-like bifurcations and asymptotic stability in a class of 3D piecewise linear systems with applications,” J. Nonlin. Sci. 31, 65. Crossref, Web of ScienceGoogle Scholar
    • Cristiano, R., de Freitas, B. R. & Medrado, J. C. [2022] “Three crossing limit cycles in a 3D-Filippov system having a T-singularity,” Int. J. Bifurcation and Chaos 32, 2250006. Link, Web of ScienceGoogle Scholar
    • de Carvalho, T. & Freitas, B. [2019] “Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields,” Discrete Contin. Dyn. Syst. B 24, 4851–4861. Crossref, Web of ScienceGoogle Scholar
    • de Carvalho, T., Cristiano, R., Goncalves, L. F. & Tonon, D. J. [2020] “Global analysis of the dynamics of a mathematical model to intermittent HIV treatment,” Nonlin. Dyn. 101, 719–739. Crossref, Web of ScienceGoogle Scholar
    • Deng, Q. & Wang, C. [2019] “Multi-scroll hidden attractors with two stable equilibrium points,” Chaos 29, 093112. Crossref, Web of ScienceGoogle Scholar
    • Fernandez-Garcia, S., García, D. A., Tost, G. O., Di Bernardo, M. & Jeffrey, M. R. [2012] “Structural stability of the two-fold singularity,” SIAM J. Appl. Dyn. Syst. 11, 1215–1230. Crossref, Web of ScienceGoogle Scholar
    • Filippov, A. F. [1988] Differential Equations with Discontinuous Righthand Sides (Kluwer Academic, Dordrecht). CrossrefGoogle Scholar
    • Gomide, O. M. & Teixeira, M. A. [2022] “Chains in 3D Filippov systems: A chaotic phenomenon,” J. Math. Pures Appl. 159, 168–195. Crossref, Web of ScienceGoogle Scholar
    • Islas, J. M., Castillo, J., Aguirre-Hernandez, B. & Verduzco, F. [2021] “Pseudo-Hopf bifurcation for a class of 3D Filippov linear systems,” Int. J. Bifurcation and Chaos 31, 2150025. Link, Web of ScienceGoogle Scholar
    • Islas, J. M., Castillo, J. & Verduzco, F. [2024] “Pseudo-Bautin bifurcation for a non-generic family of 3D Filippov systems,” Syst. Control Lett. 185, 105730. Crossref, Web of ScienceGoogle Scholar
    • Kuznetsov, Y. A., Rinaldi, S. & Gragnani, A. [2003] “One-parameter bifurcations in planar Filippov systems,” Int. J. Bifurcation and Chaos 13, 2157–2188. Link, Web of ScienceGoogle Scholar
    • Liu, Y. & Yang, Q. [2010] “Dynamics of a new Lorenz-like chaotic system,” Nonlin. Anal.: Real World Appl. 11, 2563–2572. Crossref, Web of ScienceGoogle Scholar
    • Lorenz, E. N. [1963] “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141. Crossref, Web of ScienceGoogle Scholar
    • Lü, J. & Chen, G. [2002] “A new chaotic attractor coined,” Int. J. Bifurcation and Chaos 12, 659–661. Link, Web of ScienceGoogle Scholar
    • Simpson, D. [2018] “A general framework for boundary equilibrium bifurcations of Filippov systems,” Chaos 28, 103114. Crossref, Web of ScienceGoogle Scholar
    • Sprott, J. C. [1994] “Some simple chaotic flows,” Phys. Rev. E 50, R647–R650. Crossref, Web of ScienceGoogle Scholar
    • Tang, S., Liang, J., Xiao, Y. & Cheke, R. A. [2012] “Sliding bifurcations of Filippov two stage pest control models with economic thresholds,” SIAM J. Appl. Math. 72, 1061–1080. Crossref, Web of ScienceGoogle Scholar
    • Teixeira, M. A. [1990] “Stability conditions for discontinuous vector fields,” J. Differ. Equ. 88, 15–29. Crossref, Web of ScienceGoogle Scholar
    • Wei, Z. & Yang, Q. [2012] “Dynamical analysis of the generalized Sprott C system with only two stable equilibria,” Nonlin. Dyn. 68, 543–554. Crossref, Web of ScienceGoogle Scholar
    • Wei, Z. & Wang, F. [2024] “Two-parameter bifurcations and hidden attractors in a class of 3D linear Filippov systems,” Int. J. Bifurcation and Chaos 34, 2450052. Link, Web of ScienceGoogle Scholar
    • Wu, Q., Hong, Q., Liu, X., Wang, X. & Zeng, Z. [2019] “Constructing multi-butterfly attractors based on Sprott C system via non-autonomous approaches,” Chaos 29, 043112. Crossref, Web of ScienceGoogle Scholar
    • Yang, Q., Chen, G. & Zhou, T. [2006] “A unified Lorenz-type system and its canonical form,” Int. J. Bifurcation and Chaos 16, 2855–2871. Link, Web of ScienceGoogle Scholar
    • Yang, Q., Chen, G. & Huang, K. [2007] “Chaotic attractors of the conjugate Lorenz-type system,” Int. J. Bifurcation and Chaos 17, 3929–3949. Link, Web of ScienceGoogle Scholar
    • Yang, Q. & Chen, G. [2008] “A chaotic system with one saddle and two stable node-foci,” Int. J. Bifurcation and Chaos 18, 1393–1414. Link, Web of ScienceGoogle Scholar
    • Yang, Q., Wei, Z. & Chen, G. [2010] “An unusual 3D autonomous quadratic chaotic system with two stable node-foci,” Int. J. Bifurcation and Chaos 20, 1061–1083. Link, Web of ScienceGoogle Scholar
    • Yang, Y., Huang, L., Kuznetsov, N. V., Chai, B. & Guo, Q. [2023] “Generating multiwing hidden chaotic attractors with only stable node-foci: Analysis, implementation, and application,” IEEE Trans. Ind. Electron. 71, 3986–3995. CrossrefGoogle Scholar
    • Yu, F., Zhang, W., Xiao, X., Yao, W., Cai, S., Zhang, J., Wang, C. & Li, Y. [2023] “Dynamic analysis and FPGA implementation of a new, simple 5D memristive hyperchaotic Sprott-C system,” Mathematics 11, 701. Crossref, Web of ScienceGoogle Scholar
    • Yu, T., Ma, W., Wang, Z. & Li, X. [2024] “Hidden and self-excited attractors in an extended Sprott C system with two symmetric or asymmetric equilibrium points,” Eur. Phys. J. Spec. Top. 233, 1287–1299. Crossref, Web of ScienceGoogle Scholar
    • Zhou, H. & Tang, S. [2022a] “Bifurcation dynamics on the sliding vector field of a Filippov ecological system,” Appl. Math. Comput. 424, 127052. Crossref, Web of ScienceGoogle Scholar
    • Zhou, H. & Tang, S. [2022b] “Complex dynamics and sliding bifurcations of the Filippov Lorenz–Chen system,” Int. J. Bifurcation and Chaos 32, 2250182. Link, Web of ScienceGoogle Scholar