World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Dynamical Taxonomy: Some Taxonomic Ranks to Systematically Classify Every Chaotic Attractor

    https://doi.org/10.1142/S021812742230004XCited by:10 (Source: Crossref)

    Characterizing accurately chaotic behaviors is not a trivial problem and must allow to determine the properties that two given chaotic invariant sets share or not. The underlying problem is the classification of chaotic regimes, and their labeling. Addressing these problems corresponds to the development of a dynamical taxonomy, exhibiting the key properties discriminating the variety of chaotic behaviors discussed in the abundant literature. Starting from the hierarchy of chaos initially proposed by one of us, we systematized the description of chaotic regimes observed in three- and four-dimensional spaces, which cover a large variety of known (and less known) examples of chaos. Starting with the spectrum of Lyapunov exponents as the first taxonomic ranks, we extended the description to higher ranks with some concepts inherited from topology (bounding torus, surface of section, first-return map, …).

    By treating extensively the Rössler and the Lorenz attractors, we extended the description of branched manifold — the highest known taxonomic rank for classifying chaotic attractor — by a linking matrix (or linker) to multicomponent attractors (bounded by a torus whose genus g3).

    References

    • Anishchenko, V. S. & Nikolaev, S. M. [2005] “ Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations,” Techn. Phys. Lett. 31, 853–855. Crossref, Web of ScienceGoogle Scholar
    • Arnéodo, A., Coullet, P. H. & Spiegel, E. A. [1983] “ Cascade of period doublings of tori,” Phys. Lett. A 94, 1–6. Crossref, Web of ScienceGoogle Scholar
    • Aziz-Alaoui, M. A. [1999] “ Differential equations with multispiral attractors,” Int. J. Bifurcation and Chaos 9, 1009–1039. Link, Web of ScienceGoogle Scholar
    • Bai-Lin, H. [1989] Elementary Symbolic Dynamics and Chaos in Dissipative Systems (World Scientific Publishing, Singapore). LinkGoogle Scholar
    • Birkhoff, G. D. [1927] Dynamical Systems (American Mathematical Society, NY). Google Scholar
    • Byrne, G., Gilmore, R. & Letellier, C. [2004] “ Distinguishing between folding and tearing mechanisms in strange attractors,” Phys. Rev. E 70, 056214. Crossref, Web of ScienceGoogle Scholar
    • Charó, G. D., Sciamarella, D., Mangiarotti, S., Artana, G. & Letellier, C. [2019] “ Equivalence between the unsteady double-gyre system and a 4D autonomous conservative chaotic system,” Chaos 29, 123126. Crossref, Web of ScienceGoogle Scholar
    • Charó, G. D., Artana, G. & Sciamarella, D. [2020] “ Topology of dynamical reconstructions from Lagrangian data,” Physica D 405, 132371. Crossref, Web of ScienceGoogle Scholar
    • Charó, G. D., Artana, G. & Sciamarella, D. [2021] “ Topological colouring of fluid particles unravels finite-time coherent sets,” J. Fluid Mech. 923, A17. Crossref, Web of ScienceGoogle Scholar
    • Christiansen, F. & Politi, A. [1995] “ Generating partition for the standard map,” Phys. Rev. E 51, R3811–R3814. Crossref, Web of ScienceGoogle Scholar
    • Curry, J. & Yorke, J. A. [1978] “ A transition from Hopf bifurcation to chaos: Computer experiments with maps on 2,” Lecture Notes Math. 668, 48–66. CrossrefGoogle Scholar
    • Ereshefsky, M. [2000] The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy, Cambridge Studies in Philosophy and Biology (Cambridge University Press, Cambdrige). CrossrefGoogle Scholar
    • Franceschini, V. [1983] “ Bifurcations of tori and phase locking in a dissipative system of differential equations,” Physica D 6, 285–304. Crossref, Web of ScienceGoogle Scholar
    • Frederickson, P., Kaplan, J. L., Yorke, E. D. & Yorke, J. A. [1983] “ The Lyapunov dimension of strange attractors,” J. Diff. Eqs. 49, 185–207. Crossref, Web of ScienceGoogle Scholar
    • Gilmore, R. [1998] “ Topological analysis of chaotic dynamical systems,” Rev. Mod. Phys. 70, 1455–1529. Crossref, Web of ScienceGoogle Scholar
    • Gilmore, R. & Lefranc, M. [2003] The Topology of Chaos (Wiley). CrossrefGoogle Scholar
    • Gilmore, R. & Letellier, C. [2007] The Symmetry of Chaos (Oxford University Press, NY). CrossrefGoogle Scholar
    • Gilmore, R. [2015] “ Explosions in Lorenz maps,” Chaos Solit. Fract. 76, 130–140. Crossref, Web of ScienceGoogle Scholar
    • Grebogi, C., Ott, E., Pelikan, S. & Yorke, J. A. [1984] “ Strange attractors that are not chaotic,” Physica D 13, 261–268. Crossref, Web of ScienceGoogle Scholar
    • Hénon, M. & Heiles, C. [1964] “ The applicability of the third integral of motion: Some numerical experiments,” The Astron. J. 69, 73–79. Crossref, Web of ScienceGoogle Scholar
    • Kaneko, K. [1983] “ Doubling of torus,” Progr. Theoret. Phys. 69, 1806–1810. Crossref, Web of ScienceGoogle Scholar
    • Kaneko, K. [1986] Collapse of Tori and Genesis of Chaos in Dissipative Systems (World Scientific Publishing, Singapore). LinkGoogle Scholar
    • Kaplan, J. & Yorke, J. [1979] “ Chaotic behavior of multidimensional difference equations,” Lecture Notes Math. 730, 204–227. CrossrefGoogle Scholar
    • Klein, F. [1882] Über Riemann’s Theorie der Algebraischen Functionen und ihrer Integrale (Druck und Verlag von B. G. Teubner, Leipzig). Google Scholar
    • Klein, M. & Baier, G. [1991] “ Hierarchies of dynamical systems,” A Chaotic Hierarchy (World Scientific Publishing), pp. 1–24. LinkGoogle Scholar
    • Le Sceller, L., Letellier, C. & Gouesbet, G. [1994] “ Algebraic evaluation of linking numbers of unstable periodic orbits in chaotic attractors,” Phys. Rev. E 49, 4693–4695. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C. [1994] “Caractérisation topologique et reconstruction des attracteurs étranges,” PhD thesis, University of Paris VII, Paris, France. Google Scholar
    • Letellier, C., Dutertre, P. & Gouesbet, G. [1994] “ Characterization of the Lorenz system, taking into account the equivariance of the vector field,” Phys. Rev. E 49, 3492–3495. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C. & Gouesbet, G. [1995] “ Topological characterization of a system with high-order symmetries: The proto-Lorenz system,” Phys. Rev. E 52, 4754–4761. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C., Dutertre, P. & Maheu, B. [1995] “ Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization,” Chaos 5, 271–282. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C. & Gilmore, R. [2001] “ Covering dynamical systems: Two-fold covers,” Phys. Rev. E 63, 016206. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C., Tsankov, T. D., Byrne, G. & Gilmore, R. [2005] “ Large-scale structural reorganization of strange attractors,” Phys. Rev. E 72, 026212. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C., Bennoud, M. & Martel, G. [2007] “ Intermittency and period-doubling cascade on tori in a bimode laser model,” Chaos Solit. Fract. 33, 782–794. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C. & Gilmore, R. [2009] “ Poincaré sections for a new three-dimensional toroidal attractor,” J. Phys. A 42, 015101. CrossrefGoogle Scholar
    • Letellier, C. & Aguirre, L. A. [2012] “ Required criteria for recognizing new types of chaos: Application to the “cord” attractor,” Phys. Rev. E 85, 036204. Crossref, Web of ScienceGoogle Scholar
    • Letellier, C. & Rössler, O. E. [2020] “ An updated hierarchy of chaos,” Chaos: The World of Nonperiodic Oscillations (Springer, Cham, Switzerland), pp. 181–203. Google Scholar
    • Letellier, C. [2021] “ Branched manifolds for the three types of unimodal maps,” Commun. Nonlin. Sci. Numer. Simulat. 101, 105869. Crossref, Web of ScienceGoogle Scholar
    • Malykh, S., Bakhanova, Y., Kazakov, A., Pusuluri, K. & Shilnikov, A. [2020] “ Homoclinic chaos in the Rössler model,” Chaos 30, 113126. Crossref, Web of ScienceGoogle Scholar
    • Mangiarotti, S. & Letellier, C. [2021] “ Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor,” Chaos 31, 013129. Crossref, Web of ScienceGoogle Scholar
    • Ménard, O., Letellier, C., Maquet, J., Sceller, L. L. & Gouesbet, G. [2000] “ Analysis of a non synchronized sinusoidally driven dynamical system,” Int. J. Bifurcation and Chaos 10, 1759–1772. Link, Web of ScienceGoogle Scholar
    • Mindlin, G. M. & Gilmore, R. [1992] “ Topological analysis and synthesis of chaotic time series,” Physica D 58, 229–242. Crossref, Web of ScienceGoogle Scholar
    • Miranda, R. & Stone, E. [1993] “ The proto-Lorenz system,” Phys. Lett. A 178, 105–113. Crossref, Web of ScienceGoogle Scholar
    • Parker, T. S. & Chua, L. O. [1989] Practical Numerical Algorithms for Chaotic Systems (Springer-Verlag, Berlin, NY). CrossrefGoogle Scholar
    • Rosalie, M. & Letellier, C. [2013] “ Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry,” J. Phys. A 46, 375101. CrossrefGoogle Scholar
    • Rössler, O. E. [1976] “ An equation for continuous chaos,” Phys. Lett. A 57, 397–398. Crossref, Web of ScienceGoogle Scholar
    • Rössler, O. E. [1978] “ The hierarchy of chaos,” 10th Summer Seminar on Applied Mathematics, F. C. Hoppensteadt (organizer), University of Utah. Google Scholar
    • Rössler, O. E. [1979a] “ Continuous chaos: Four prototype equations,” Ann. NY Acad. Sci. 316, 376–392. CrossrefGoogle Scholar
    • Rössler, O. E. [1979b] “ An equation for hyperchaos,” Phys. Lett. A 71, 155–157. Crossref, Web of ScienceGoogle Scholar
    • Rössler, O. E. [1983] “ The chaotic hierarchy,” Zeitschrift für Naturforschung A 38, 788–801. CrossrefGoogle Scholar
    • Ruelle, D. & Takens, F. [1971] “ On the nature of turbulence,” Commun. Math. Phys. 20, 167–192. Crossref, Web of ScienceGoogle Scholar
    • Séquin, C. H. [2013] “ On the number of Klein bottle types,” J. Math. Arts 7, 51–63. CrossrefGoogle Scholar
    • Sprott, J. C. [1997] “ Some simple chaotic jerk functions,” Amer. J. Phys. 65, 537–543. Crossref, Web of ScienceGoogle Scholar
    • Sprott, J. C. [2011] “ A proposed standard for the publication of new chaotic systems,” Int. J. Bifurcation and Chaos 21, 2391–2394. Link, Web of ScienceGoogle Scholar
    • Stankevich, N. V., Shchegoleva, N. A., Sataev, I. R. & Kuznetsov, A. P. [2020] “ Three-dimensional torus breakdown and chaos with two zero Lyapunov exponents in coupled radio-physical generators,” J. Comput. Nonlin. Dyn. 15, 111001. Crossref, Web of ScienceGoogle Scholar
    • Tricoche, X., Garth, C. & Sanderson, A. [2011] “ Visualization of topological structures in area-preserving maps,” IEEE Trans. Visual. Comput. Graph. 17, 1765–1774. Crossref, Web of ScienceGoogle Scholar
    • Tsankov, T. D. & Gilmore, R. [2003] “ Strange attractors are classified by bounding tori,” Phys. Rev. Lett. 91, 134104. Crossref, Web of ScienceGoogle Scholar
    • Tsankov, T. D. & Gilmore, R. [2004] “ Topological aspects of the structure of chaotic attractors in 3,” Phys. Rev. E 69, 056206. Crossref, Web of ScienceGoogle Scholar
    • Tufillaro, N. B., Abbott, T. & Reilly, J. [1992] An Experimental Approach to Nonlinear Dynamics and Chaos (Addison-Wesley, Redwood City, CA). Google Scholar
    • Ueda, Y. [1993] The Road to Chaos, Science Frontier Express Series (Aerial Press, Santa Cruz, CA). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos