World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Computer-Assisted Methods for Analyzing Periodic Orbits in Vibrating Gravitational Billiards

    https://doi.org/10.1142/S0218127421300214Cited by:0 (Source: Crossref)

    Using rigorous numerical methods, we prove the existence of 608 isolated periodic orbits in a gravitational billiard in a vibrating unbounded parabolic domain. We then perform pseudo-arclength continuation in the amplitude of the parabolic surface’s oscillation to compute large, global branches of periodic orbits. These branches are themselves proven rigorously using computer-assisted methods. Our numerical investigations strongly suggest the existence of multiple pitchfork bifurcations in the billiard model. Based on the numerics, physical intuition and existing results for a simplified model, we conjecture that for any pair (k,p), there is a constant ξ for which periodic orbits consisting of k impacts per period p cannot be sustained for amplitudes of oscillation below ξ. We compute a verified upper bound for the conjectured critical amplitude for (k,p)=(2,2) using our rigorous pseudo-arclength continuation.

    References

    • Baxter, A. M. & Umble, R. [2007] “ Periodic orbits for billiards on an equilateral triangle,” Amer. Math. Month. 115, 479–491. Crossref, Web of ScienceGoogle Scholar
    • Biswas, D. [1997] “ Periodic orbits in polygonal billiards,” Pramana 48, 487–501. Crossref, Web of ScienceGoogle Scholar
    • Boshernitzan, M., Galperin, G., Kr’́uger, T. & Troubetzkoy, S. [1998] “ Periodic billiard orbits are dense in rational polygons,” Trans. Amer. Math. Soc. 350, 3523–3535. Crossref, Web of ScienceGoogle Scholar
    • Breden, M., Lessard, J.-P. & Vanicat, M. [2013] “ Global bifurcation diagrams of steady states of systems of pdes via rigorous numerics: A 3-component reaction–diffusion system,” Acta Appl. Math. 128, 113–152. Crossref, Web of ScienceGoogle Scholar
    • Calleja, R., García-Azpeitia, C., Lessard, J.-P. & Mireles James, J. D. [2021] “ Torus knot choreographies in the n-body problem,” Nonlinearity 34, 313. Crossref, Web of ScienceGoogle Scholar
    • Chatterjee, R., Jackson, A. D. & Balazs, N. L. [1996] “ Rigid-body motion, interacting billiards, and billiards on curved manifolds,” Phys. Rev. E 53, 5670–5679. Crossref, Web of ScienceGoogle Scholar
    • Chernov, N. & Markarian, R. [2003] Introduction to the Ergodic Theory of Chaotic Billiards (Impa). Google Scholar
    • Costa, D. R. D., Dettmann, C. P. & Leonel, E. D. [2015] “ Circular, elliptic and oval billiards in a gravitational field,” Commun. Nonlin. Sci. Numer. Simulat. 22, 731–746. Crossref, Web of ScienceGoogle Scholar
    • Feldt, S. & Olafsen, J. S. [2005] “ Inelastic gravitational billiards,” Phys. Rev. Lett. 94, 224102. Crossref, Web of ScienceGoogle Scholar
    • Gómez-Serrano, J. [2019] “ Computer-assisted proofs in PDE: A survey,” SeMA J. 76, 459–484. CrossrefGoogle Scholar
    • Hargreaves, G. [2002] “ Interval analysis in MATLAB,” Manchester Centre for Computational Mathematics, Numerical Analysis Reports 416. Google Scholar
    • Hartl, A. E., Miller, B. N. & Mazzoleni, A. P. [2013] “ Dynamics of a dissipative, inelastic gravitational billiard,” Phys. Rev. E 87, 032901. Crossref, Web of ScienceGoogle Scholar
    • Huang, J. & Luo, A. C. J. [2017] “ Complex dynamics of bouncing motions on boundaries and corners in a discontinuous dynamical system,” J. Comput. Nonlin. Dyn. 12, 061014. Crossref, Web of ScienceGoogle Scholar
    • Huang, J. & Fu, X. [2019] “ Stability and chaos for an adjustable excited oscillator with system switch,” Commun. Nonlin. Sci. Numer. Simulat. 77, 108–125. Crossref, Web of ScienceGoogle Scholar
    • Korsch, H. J. & Lang, J. [1991] “ A new integrable gravitational billiard,” J. Phys. A: Math. Gen. 24, 45–52. CrossrefGoogle Scholar
    • Langer, C. K. & Miller, B. N. [2015] “A three dimensional gravitational billiard in a cone,” arXiv:1507.06693. Google Scholar
    • Lessard, J.-P., Mireles James, J. & Hungria, A. [2016] “ Rigorous numerics for analytic solutions of differential equations: The radii polynomial approach,” Math. Comput. 85, 1427–1459. Web of ScienceGoogle Scholar
    • Lessard, J.-P., Sander, E. & Wanner, T. [2017] “ Rigorous continuation of bifurcation points in the diblock copolymer equation,” J. Comput. Dyn. 4, 71. Google Scholar
    • Luo, A. C. J. & Han, R. P. S. [1996] “ The dynamics of a bouncing ball with a sinusoidally vibrating table revisited,” Nonlin. Dyn. 10, 1–18. Crossref, Web of ScienceGoogle Scholar
    • Mátyás, L. & Barna, I. [2011] “ Geometrical origin of chaoticity in the bouncing ball billiard,” Chaos Solit. Fract. 44, 1111–1116. Crossref, Web of ScienceGoogle Scholar
    • Peraza-Mues, G. G., Carvente, O. & Moukarzel, C. F. [2017] “ Rotation in a gravitational billiard,” Int. J. Mod. Phys. C 28, 1750021. Link, Web of ScienceGoogle Scholar
    • Rump, S. [1999] “ INTLAB — INTerval LABoratory,” Developments in Reliable Computing, ed. Csendes, T. (Kluwer Academic Publishers, Dordrecht), pp. 77–104. CrossrefGoogle Scholar
    • Tang, X., Fu, X. & Sun, X. [2019] “ Periodic motion for an oblique impact system with single degree of freedom,” J. Vibr. Test. Syst. Dyn. 3, 71–89. CrossrefGoogle Scholar
    • Troubetzkoy, S. [2005] “ Periodic billiard orbits in right triangles,” Ann. Inst. Fourier 55, 29–46. Crossref, Web of ScienceGoogle Scholar