World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

High-Order Analysis of Canard Explosion in the Brusselator Equations

    https://doi.org/10.1142/S0218127420500789Cited by:10 (Source: Crossref)

    The aim of this paper is to obtain a high-order approximation of the canard explosion in the Brusselator equations. This classical chemical system has been extensively studied but, until now, only first-order approximation to the canard explosion has been provided. Here, with the help of the nonlinear time transformation method, we are able to obtain an approximation to any desired order. Our results strongly agree with those obtained by numerical continuation.

    References

    • Algaba, A., Chung, K. W., Qin, B. W. & Rodríguez-Luis, A. J. [2019] “ A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form,” Nonlin. Dyn. 97, 979–990. Web of ScienceGoogle Scholar
    • Algaba, A., Chung, K. W., Qin, B. W. & Rodríguez-Luis, A. J. [2020a] “ Computation of all the coefficients for the global connections in the 2-symmetric Takens–Bogdanov normal forms,” Commun. Nonlin. Sci. Numer. Simulat. 81, 105012. Web of ScienceGoogle Scholar
    • Algaba, A., Chung, K. W., Qin, B. W. & Rodríguez-Luis, A. J. [2020b] “ Analytical approximation of the canard explosion in a van der Pol system with the nonlinear time transformation method,” Physica D 406, 132384. Web of ScienceGoogle Scholar
    • Ambrosio, B., Aziz-Alaoui, M. A. & Yafia, R. [2018] “ Canard phenomenon in a slow–fast modified Leslie–Gower model,” Math. Biosci. 295, 48–54. Web of ScienceGoogle Scholar
    • Atabaigi, A. & Barati, A. [2017] “ Relaxation oscillations and canard explosion in a predator–prey system of Holling and Leslie types,” Nonlin. Anal.: Real World Appl. 36, 139–153. Web of ScienceGoogle Scholar
    • Baer, S. M. & Erneux, T. [1986] “ Singular Hopf bifurcation to relaxation oscillations,” SIAM J. Appl. Math. 46, 721–739. Web of ScienceGoogle Scholar
    • Benoit, E., Callot, J. F., Diener, F. & Diener, M. [1981] “ Chasse au canard,” Collect. Math. 31–32, 37–119. Google Scholar
    • Bie, Q. [2011] “ Pattern formation in a general two-cell Brusselator model,” J. Math. Anal. Appl. 376, 551–564. Web of ScienceGoogle Scholar
    • Brøns, M. & Bar-Eli, K. [1991] “ Canard explosion and excitation in a model of the Belousov–Zhabotinsky reaction,” J. Phys. Chem. 95, 8706–8713. Web of ScienceGoogle Scholar
    • Brøns, M. & Bar-Eli, K. [1994] “ Asymptotic analysis of canards in the EOE equations and the role of the inflection line,” Proc. Roy. Soc. London A 445, 305–322. Web of ScienceGoogle Scholar
    • Brøns, M. & Sturis, J. [2001] “ Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system,” Phys. Rev. E 64, 026209. Web of ScienceGoogle Scholar
    • Brøns, M. [2005] “ Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures,” Proc. Roy. Soc. A 461, 2289–2302. Google Scholar
    • Brown, K. J. & Davidson, F. A. [1995] “ Global bifurcation in the Brusselator system,” Nonlin. Anal. 24, 1713–1725. Web of ScienceGoogle Scholar
    • Cao, Y. Y., Chung, K. W. & Xu, J. [2011] “ A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method,” Nonlin. Dyn. 64, 221–236. Web of ScienceGoogle Scholar
    • Chan, H. S. Y., Chung, K. W. & Xu, Z. [1996] “ A perturbation-incremental method for strongly non-linear oscillators,” Int. J. Non-Lin. Mech. 31, 59–72. Web of ScienceGoogle Scholar
    • Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Meijer, H. G. E. & Sautois, B. [2008] “ New features of the software MatCont for bifurcation analysis of dynamical systems,” Math. Comp. Model. Dyn. 14, 147–175. Web of ScienceGoogle Scholar
    • Doedel, E. J., Freire, E., Gamero, E. & Rodríguez-Luis, A. J. [2002] “ An analytical and numerical study of a modified van der Pol oscillator,” J. Sound Vibr. 256, 755–771. Web of ScienceGoogle Scholar
    • Doedel, E. J., Champneys, A. R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X. & Zhang, C. [2012] “AUTO-07P: Continuation and bifurcation software for ordinary differential equations (with HomCont),” Technical report, Concordia University. Google Scholar
    • Dumortier, F. & Roussarie, R. [1996] “ Canard cycles and center manifolds,” Mem. Amer. Math. Soc. 121, 577. Web of ScienceGoogle Scholar
    • Dumortier, F. & Roussarie, R. [2001] “ Multiple canard cycles in generalized Liénard equations,” J. Diff. Eqs. 174, 1–29. Web of ScienceGoogle Scholar
    • Eckhaus, W. [1983] “ Relaxation oscillations including a standard chase on French ducks,” Asymptotic Analysis II, Lecture Notes in Mathematics, Vol. 985 (Springer, Berlin), pp. 449–494. Google Scholar
    • Epstein, I. R. & Pojman, J. A. [1998] An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, NY). Google Scholar
    • Erneux, T. & Reiss, E. [1983] “ Brusselator isolas,” SIAM J. Appl. Math. 43, 1240–1246. Web of ScienceGoogle Scholar
    • Freire, E., Gamero, E. & Rodríguez-Luis, A. J. [1999] “ First-order approximation for canard periodic orbits in a van der Pol electronic oscillator,” Appl. Math. Lett. 12, 73–78. Web of ScienceGoogle Scholar
    • Ginoux, J. M., Llibre, J. & Chua, L. O. [2013] “ Canards from Chua’s circuit,” Int. J. Bifurcation and Chaos 23, 1330010. Link, Web of ScienceGoogle Scholar
    • Kolokolnikov, T., Erneux, T. & Wei, J. [2006] “ Mesa-type patterns in the one-dimensional Brusselator and their stability,” Physica D 214, 63–77. Web of ScienceGoogle Scholar
    • Krupa, M. & Szmolyan, P. [2001] “ Relaxation oscillation and canard explosion,” J. Diff. Eqs. 174, 312–368. Web of ScienceGoogle Scholar
    • Kuehn, C. [2010] “ From first Lyapunov coefficients to maximal canards,” Int. J. Bifurcation and Chaos 20, 1467–1475. Link, Web of ScienceGoogle Scholar
    • Larter, R., Rabitz, H. & Kramer, M. A. [1984] “ Sensitivity analysis of limit cycles with application to the Brusselator,” J. Chem. Phys. 80, 4120–4128. Web of ScienceGoogle Scholar
    • Li, C., Li, J., Ma, Z. & Zhu, H. [2014] “ Canard phenomenon for an SIS epidemic model with nonlinear incidence,” J. Math. Anal. Appl. 420, 987–1004. Web of ScienceGoogle Scholar
    • Liao, M. & Wang, Q. R. [2016] “ Stability and bifurcation analysis in a diffusive Brusselator-type system,” Int. J. Bifurcation and Chaos 26, 1650119. Link, Web of ScienceGoogle Scholar
    • Luo, A. C. J. & Guo, S. [2018] “ Period-1 evolutions to chaos in a periodically forced Brusselator,” Int. J. Bifurcation and Chaos 28, 1830046. Link, Web of ScienceGoogle Scholar
    • Marius, G. [2008] “ Non-constant steady-state solutions for Brusselator type systems,” Nonlinearity 21, 2331–2345. Web of ScienceGoogle Scholar
    • Matzinger, E. [2006] “ Asymptotic behaviour of solutions near a turning point: The example of the Brusselator equation,” J. Diff. Eqs. 220, 478–510. Web of ScienceGoogle Scholar
    • Mishchenko, E. F., Kolesov, Y. S., Kolesov, A. Y. & Rozov, N. K. [1994] Asymptotic Methods in Singularly Perturbed Systems (Consultants Bureau, NY). Google Scholar
    • Moehlis, J. [2002] “ Canards in a surface oxidation reaction,” J. Nonlin. Sci. 12, 319–345. Web of ScienceGoogle Scholar
    • Nicolis, G. & Prigogine, I. [1977] Self-Organization in Equilibrium Systems (Wiley, NY). Google Scholar
    • Osipov, V. V. & Ponizovskaya, E. V. [2000] “ Stochastic resonance in the Brusselator model,” Phys. Rev. E 61, 4603–4605. Web of ScienceGoogle Scholar
    • Prigogine, I. & Lefever, R. [1968] “ Symmetry breaking instabilities in dissipative systems. II,” J. Chem. Phys. 48, 1695–1700. Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Fahsi, A. & Belhaq, M. [2016] “ On the heteroclinic connections in the 1:3 resonance problem,” Int. J. Bifurcation and Chaos 26, 1650143. Link, Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Rodríguez-Luis, A. J. & Belhaq, M. [2018] “ Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens–Bogdanov normal form with D4 symmetry,” Chaos 28, 093107. Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Algaba, A. & Rodríguez-Luis, A. J. [2020a] “ High-order analysis of global bifurcations in a codimension-three Takens–Bogdanov singularity in reversible systems,” Int. J. Bifurcation and Chaos 30, 2050017. Link, Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Algaba, A. & Rodríguez-Luis, A. J. [2020b] “ Analytical approximation of cuspidal loops using a nonlinear time transformation method,” Appl. Math. Comput. 373, 125042. Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Algaba, A. & Rodríguez-Luis, A. J. [2020c] “ High-order study of the canard explosion in an aircraft ground dynamics model,” Nonlin. Dyn., https://doi.org/10.1007/s11071-020-05575-w (accepted). Web of ScienceGoogle Scholar
    • Qin, B. W., Chung, K. W., Algaba, A. & Rodríguez-Luis, A. J. [2020d] “ Asymptotic expansions for a family of non-generic canards using parametric representation,” Appl. Math. Lett. 106, 106355. Web of ScienceGoogle Scholar
    • Rankin, J., Desroches, M., Krauskopf, B. & Lowenberg, M. [2011] “ Canard cycles in aircraft ground dynamics,” Nonlin. Dyn. 66, 681–688. Web of ScienceGoogle Scholar
    • Sun, W. & Zhang, Y. [2015] “ Control and synchronization of Julia sets in the forced Brusselator model,” Int. J. Bifurcation and Chaos 25, 1550113. Link, Web of ScienceGoogle Scholar
    • Tyson, J. J. [1973] “ Some further studies of nonlinear oscillations in chemical systems,” J. Chem. Phys. 58, 3919–3930. Web of ScienceGoogle Scholar
    • Vidal, A. & Françoise, J. P. [2012] “ Canard cycles in global dynamics,” Int. J. Bifurcation and Chaos 22, 1250026. Link, Web of ScienceGoogle Scholar
    • Zuo, W. & Wei, J. [2012] “ Stability and bifurcation analysis in a diffusive Brusselator system with delayed feedback control,” Int. J. Bifurcation and Chaos 22, 1250037. Link, Web of ScienceGoogle Scholar
    • Zvonkin, A. K. & Shubin, M. A. [1984] “ Non-standard analysis and singular perturbations of ordinary differential equations,” Russ. Math. Surv. 39, 69–131. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos