World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Control of Divergence in an Extended Invertible Logistic Map

    https://doi.org/10.1142/S0218127418501298Cited by:4 (Source: Crossref)

    The extended invertible Logistic map and its properties are investigated in this paper. It is demonstrated that initial conditions of the extended invertible Logistic map can yield trajectories of three different types. Dedicated algorithms are used to prove the existence of transient Wada-type boundaries in the phase plane of initial conditions. An adaptive control technique for the temporary control of the divergence of the extended invertible Logistic map is proposed. This control technique is based on short impulses and exploits the properties of the Wada-type boundaries. Computational experiments are used to illustrate the efficacy of the proposed technique.

    References

    • 1. Akhshani, A., Akhavan, A., Lim, S.-C. & Hassan, Z. [2012] “ An image encryption scheme based on quantum Logistic map,” Commun. Nonlin. Sci. Numer. Simulat. 17, 4653–4661. Crossref, Web of ScienceGoogle Scholar
    • 2. Blesa, F., Seoane, J. M., Barrio, R. & Sanjuan, M. A. [2012] “ To escape or not to escape, that is the question — Perturbing the Hénon–Heiles Hamiltonian,” Int. J. Bifurcation and Chaos 22, 1230010. Link, Web of ScienceGoogle Scholar
    • 3. Dai, J. J. [2000] “ A result regarding convergence of random Logistic maps,” Statist. Probab. Lett. 47, 11–14. Crossref, Web of ScienceGoogle Scholar
    • 4. Daza, A., Wagemakers, A., Sanjuán, M. A. & Yorke, J. A. [2015] “ Testing for basins of Wada,” Scient. Rep. 5. Web of ScienceGoogle Scholar
    • 5. Huertas, J. L., Chen, W.-K. & Madan, R. N. [1999] Visions of Nonlinear Science in the 21st Century: Festschrift Dedicated to Leon O. Chua on the Occasion of His 60th Birthday, World Scientific Series on Nonlinear Sciences, Vol. 26 (World Scientific). Google Scholar
    • 6. Jaganathan, R. & Sinha, S. [2005] “ A q-deformed nonlinear map,” Phys. Lett. A 338, 277–287. Crossref, Web of ScienceGoogle Scholar
    • 7. Kennedy, J. & Yorke, J. A. [1991] “ Basins of Wada,” Physica D 51, 213–225. Crossref, Web of ScienceGoogle Scholar
    • 8. Kurakin, V., Kuzmin, A., Mikhalev, A. & Nechaev, A. [1995] “ Linear recurring sequences over rings and modules,” J. Math. Sci. 76, 2793–2915. CrossrefGoogle Scholar
    • 9. Lai, Y.-C. & Tél, T. [2011] Transient Chaos: Complex Dynamics on Finite Time Scales, Vol. 173 (Springer Science & Business Media). CrossrefGoogle Scholar
    • 10. Landauskas, M. & Ragulskis, M. [2014] “ A pseudo-stable structure in a completely invertible bouncer system,” Nonlin. Dyn. 78, 1629–1643. Crossref, Web of ScienceGoogle Scholar
    • 11. Landauskas, M., Navickas, Z., Vainoras, A. & Ragulskis, M. [2017] “ Weighted moving averaging revisited: An algebraic approach,” Comput. Appl. Math. 36, 1545–1558. Crossref, Web of ScienceGoogle Scholar
    • 12. Liz, E. [2010] “ Complex dynamics of survival and extinction in simple population models with harvesting,” Theoret. Ecol. 3, 209–221. Crossref, Web of ScienceGoogle Scholar
    • 13. López-Ruiz, R., Fournier-Prunaret, D., Nishio, Y. & Grácio, C. [2015] Nonlinear Maps and Their Applications: Selected Contributions from the NOMA 2013 Int. Workshop, Vol. 112 (Springer). Google Scholar
    • 14. May, R. M. [1976] “ Simple mathematical models with very complicated dynamics,” Nature 261, 459–467. Crossref, Web of ScienceGoogle Scholar
    • 15. Miyazaki, T., Araki, S. & Uehara, S. [2010] “ Some properties of Logistic maps over integers,” IEICE Trans. Fund. Electron. Commun. Comput. Sci. 93, 2258–2265. Crossref, Web of ScienceGoogle Scholar
    • 16. Navickas, Z., Smidtaite, R., Vainoras, A. & Ragulskis, M. [2011] “ The Logistic map of matrices,” Discr. Contin. Dyn. Syst.-B 3, 927–944. Google Scholar
    • 17. Ragulskis, M. & Navickas, Z. [2011] “ The rank of a sequence as an indicator of chaos in discrete nonlinear dynamical systems,” Commun. Nonlin. Sci. Numer. Simulat. 16, 2894–2906. Crossref, Web of ScienceGoogle Scholar
    • 18. Xiao, H., Ma, Y. & Li, C. [2014] “ Chaotic vibration in fractional maps,” J. Vibr. Contr. 20, 964–972. Crossref, Web of ScienceGoogle Scholar
    • 19. Xu, L., Zhang, G., Han, B., Zhang, L., Li, M. & Han, Y. [2010] “ Turing instability for a two-dimensional Logistic coupled map lattice,” Phys. Lett. A 374, 3447–3450. Crossref, Web of ScienceGoogle Scholar
    • 20. Yet, N. T., Son, D. T., Jäger, T. & Siegmund, S. [2011] “ Nonautonomous saddle-node bifurcations in the quasiperiodically forced Logistic map,” Int. J. Bifurcation and Chaos 21, 1427–1438. Link, Web of ScienceGoogle Scholar
    • 21. Zhang, Y. & Luo, G. [2013] “ Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map,” Phys. Lett. A 377, 1274–1281. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos