World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Establishment of Physical and Mathematical Models for Sr0.95Ba0.05TiO3 Memristor

    https://doi.org/10.1142/S0218127417501486Cited by:22 (Source: Crossref)

    The Sr0.95Ba0.05TiO3 (SBT) memristor is prepared using the monolayer Sr0.95Ba0.05TiO3 nano-film structure. In order to apply it into the nonlinear circuit design, the SBT memristor is modeled in the paper. The voltage-controlled physical model of the SBT memristor is established based on its working mechanism. Due to the difficulty in determining the accurate parameters of the voltage-controlled physical model, a flux-controlled mathematical model of the SBT memristor is proposed, and its equivalence relation with the voltage-controlled physical model is proved. Moreover, the parameters of the flux-controlled mathematical model are determined by means of the quadratic polynomial interpolation method using the experimentally measured voltage and current data of the SBT memristor. The simulated ui characteristic curve using the flux-controlled mathematical model coincides well with the measured ui characteristic curves. The result indicates that the flux-controlled mathematical model with the definite parameters can be used to characterize the behaviors of the physical SBT memristor and guide its application to nonlinear circuit design.

    References

    • Abunahla, H., Mohammad, B., Homouz, D. & Okelly, C. J. [2016] “ Modeling valance change memristor device: Oxide thickness, material type, and temperature effects,” IEEE Trans. Circuits Syst.-I: Reg. Papers 63, 2139–2148. Web of ScienceGoogle Scholar
    • Adhikari, S. P., Kim, H., Budhathoki, R. K., Yang, C. & Chua, L. O. [2012] “ A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses,” IEEE Trans. Circuits Syst.-I: Reg. Papers 62, 215–223. Web of ScienceGoogle Scholar
    • Biolek, Z., Biolek, D. & Biolkova, V. [2009] “ SPICE model of memristor with nonlinear dopant drift,” Radioengin. 18, 210–214. Web of ScienceGoogle Scholar
    • Chua, L. O. [1971] “ Memristor — The missing circuit element,” IEEE Trans. Circuit Th. 18, 507–519. Web of ScienceGoogle Scholar
    • Huang, X., Zhao, Z., Wang, Z. & Li, Y. [2012] “ Chaos and hyperchaos in fractional-order cellular neural networks,” Neurocomputing 94, 13–21. Web of ScienceGoogle Scholar
    • Itoh, M. & Chua, L. O. [2008] “ Memristor oscillators,” Int. J. Bifurcation and Chaos 18, 3138–3206. Link, Web of ScienceGoogle Scholar
    • Itoh, M. & Chua, L. O. [2014] “ Dynamics of memristor circuits,” Int. J. Bifurcation and Chaos 24, 1430015-1–44. Link, Web of ScienceGoogle Scholar
    • Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P. & Lu, W. [2010] “ Nanoscale memristor device as synapse in neuromorphic systems,” IEEE Trans. Circuit Th. 10, 1297–1301. Google Scholar
    • Joglekar, Y. N. & Wolf, S. J. [2009] “ The elusive memristor: Properties of basic electrical circuits,” Eur. J. Phys. 30, 661–675. Web of ScienceGoogle Scholar
    • Kvatinsky, S., Friedman, E. G., Kolodny, A. & Weiser, U. C. [2012] “ TEAM: Threshold adaptive memristor model,” IEEE Trans. Circuits Syst.-I: Reg. Papers 60, 211–221. Web of ScienceGoogle Scholar
    • Kvatinsky, S., Ramadan, M., Friedman, E. G. & Kolodny, A. [2015] “ VTEAM: A general model for voltage-controlled memristors,” IEEE Trans. Circuits Syst.-II: Exp. Briefs 62, 786–790. Web of ScienceGoogle Scholar
    • Li, Y. X. & Dou, G. [2013] “ Towards the implementation of memristor: A study of the electric properties of Ba0.77Sr0.23TiO3 material,” Int. J. Bifurcation and Chaos 23, 1350204-1–6. Link, Web of ScienceGoogle Scholar
    • Li, Y., Zhong, Y., Xu, L., Zhang, J., Xu, X., Sun, H. & Miao, X. [2013] “ Ultrafast synaptic events in a chalcogenide memristor,” Sci. Rep. 3, 1619. Web of ScienceGoogle Scholar
    • Li, Y., Xu, L., Zhong, Y. P., Zhou, Y. X., Zhong, S. J., Hu, Y. Z., Chua, L. O. & Miao, X. S. [2015] “ Memristors: Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks,” Adv. Electron. Mater. 1, 1171–1176. Web of ScienceGoogle Scholar
    • Li, Y., Zhou, Y. X., Xu, L., Lu, K., Wang, Z. R., Duan, N., Jiang, L., Cheng, L., Chang, T. C., Chang, K. C., Sun, H. J., Xue, K. H. & Miao, X. S. [2016] “ Realization of functional complete stateful Boolean logic in memristive crossbar,” ACS Appl. Mater. Interf. 8, 34559–34567. Web of ScienceGoogle Scholar
    • Liu, E., Cheng, H., Zhu, X., Wang, G. & Wang, N. [2013] “ Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films,” ACS Appl. Mater. Interf. 5, 11258–11264. Web of ScienceGoogle Scholar
    • Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R. & Williams, R. S. [2009] “ Switching dynamics in titanium dioxide memristive devices,” J. Appl. Phys. 106, 074508. Web of ScienceGoogle Scholar
    • Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K. & Strukov, D. B. [2015] “ Training and operation of an integrated neuromorphic network based on metal-oxide memristors,” Nature 521, 61–64. Web of ScienceGoogle Scholar
    • Prodromakis, T., Peh, B. P., Papavassiliou, C. & Toumazou, C. [2011] “ A versatile memristor model with nonlinear dopant kinetics,” IEEE Trans. Electron. Dev. 58, 3099–3105. Web of ScienceGoogle Scholar
    • Rahman, K. C., Hammerstrom, D., Li, Y., Castagnaro, H. & Perkowski, M. A. [2014] “ Methodology and design of a massively parallel memristive stateful IMPLY logic-based reconfigurable architecture,” IEEE Trans. Nanotechnol. 15, 675–686. Web of ScienceGoogle Scholar
    • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. [2008] “ The missing memristor found,” Nature 453, 80–83. Web of ScienceGoogle Scholar
    • Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. [2011] “ Electrochemical metallization memories — fundamentals, applications, prospects,” Nanotechnology 22, 254003. Web of ScienceGoogle Scholar
    • Wang, Z. R., Su, Y. T., Li, Y., Zhou, Y. X., Chu, T. J., Chang, K. C., Chang, T. C., Tsai, T. M., Sze, S. M. & Miao, X. S. [2016] “ Functionally complete Boolean logic in 1T1R resistive random access memory,” IEEE Electron. Dev. Lett. 38, 179–182. Web of ScienceGoogle Scholar
    • Wen, S., Zeng, Z., Huang, T. & Zhang, Y. [2013] “ Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators,” IEEE Trans. Fuzzy Syst. 22, 1704–1713. Web of ScienceGoogle Scholar
    • Wen, S., Huang, T., Yu, X., Chen, M. Q. & Zeng, Z. [2016] “ Sliding-mode control of memristive Chua’s systems via the event-based method,” IEEE Trans. Circuits Syst.-II: Exp. Briefs 64, 81–85. Web of ScienceGoogle Scholar
    • Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R. & Williams, R. S. [2008] “ Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature 3, 429–433. Web of ScienceGoogle Scholar
    • Yang, Y., Mathew, J., Pontarelli, S., Ottavi, M. & Pradhan, D. K. [2016] “ Complementary resistive switch-based arithmetic logic implementations using material implication,” IEEE Trans. Nanotechnol. 15, 94–108. Web of ScienceGoogle Scholar
    • Zhou, Y., Li, Y., Xu, L., Zhong, S., Sun, H. & Miao, X. [2015] “ 16 Boolean logics in three steps with two anti-serially connected memristors,” Appl. Phys. Lett. 106, 233502. Web of ScienceGoogle Scholar
    • Zhou, Y. X., Li, Y., Su, Y. T., Wang, Z. R., Shih, L. Y., Chang, T. C., Chang, K. C., Long, S. B., Sze, S. M. & Miao, X. S. [2017] “ Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array,” Nanoscale 9, 6649–6657. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos