World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Complex Networks Unveiling Spatial Patterns in Turbulence

    Numerical and experimental turbulence simulations are nowadays reaching the size of the so-called big data, thus requiring refined investigative tools for appropriate statistical analyses and data mining. We present a new approach based on the complex network theory, offering a powerful framework to explore complex systems with a huge number of interacting elements. Although interest in complex networks has been increasing in the past years, few recent studies have been applied to turbulence. We propose an investigation starting from a two-point correlation for the kinetic energy of a forced isotropic field numerically solved. Among all the metrics analyzed, the degree centrality is the most significant, suggesting the formation of spatial patterns which coherently move with similar vorticity over the large eddy turnover time scale. Pattern size can be quantified through a newly-introduced parameter (i.e. average physical distance) and varies from small to intermediate scales. The network analysis allows a systematic identification of different spatial regions, providing new insights into the spatial characterization of turbulent flows. Based on present findings, the application to highly inhomogeneous flows seems promising and deserves additional future investigation.

    References

    • Albert, R. & Barabási, A. L. [2002] “ Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 47–97. Crossref, ISIGoogle Scholar
    • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D. U. [2006] “ Complex networks: Structure and dynamics,” Phys. Rep. 424, 175–308. Crossref, ISIGoogle Scholar
    • Caraiani, P. [2013] “ Using complex networks to characterize international business cycles,” PLoS One 8, e58109. Crossref, ISIGoogle Scholar
    • Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N. & Liakopoulos, A. [2014] “ The application of complex network time series analysis in turbulent heated jets,” Chaos 24, 024408. Crossref, ISIGoogle Scholar
    • Costa, L. D. F., Oliveira, O. N., Travieso, G., Rodrigues, F. A., Boas, P. R. V., Antiqueira, L., Viana, M. P. & Rocha, L. E. C. [2011] “ Analyzing and modeling real-world phenomena with complex networks: A survey of applications,” Adv. Phys. 60, 329–412. Crossref, ISIGoogle Scholar
    • Deng, W., Li, W., Cai, X. & Wang, Q. A. [2011] “ The exponential degree distribution in complex networks: Non-equilibrium network theory, numerical simulation and empirical data,” Physica A 390, 1481–1485. Crossref, ISIGoogle Scholar
    • Donges, J. F., Zou, Y., Marwan, N. & Kurths, J. [2009] “ Complex networks in climate dynamics,” Eur. Phys. J. Special Topics 174, 157–179. Crossref, ISIGoogle Scholar
    • Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R. & Kurths, J. [2011] “ Recurrence-based time series analysis by means of complex network methods,” Int. J. Bifurcation and Chaos 21, 1019–1046. Link, ISIGoogle Scholar
    • Dunne, J. A., Williams, R. J. & Martinez, N. D. [2002] “ Food-web structure and network theory: The role of connectance and size,” Proc. Natl. Acad. Sci. USA 99, 12917–12922. Crossref, ISIGoogle Scholar
    • Fiscaletti, D., Westerweel, J. & Elsinga, G. E. [2014] “ Long-range μpiv to resolve the small scales in a jet at high Reynolds number,” Exp. Fluids 55, 1–15. Crossref, ISIGoogle Scholar
    • Frisch, U. [1995] Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University Press). CrossrefGoogle Scholar
    • Gao, Z. & Jin, N. [2009] “ Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks,” Phys. Rev. E 79, 066303. Crossref, ISIGoogle Scholar
    • Gao, Z. K., Zhang, X. W., Jin, N. D., Donner, R. V., Marwan, N. & Kurths, J. [2013] “ Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows,” Europhys. Lett. 103, 50004. CrossrefGoogle Scholar
    • Gao, Z. K., Fang, P. C., Ding, M. S. & Jin, N. D. [2015a] “ Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow,” Exp. Therm. Fluid Sci. 60, 157–164. Crossref, ISIGoogle Scholar
    • Gao, Z. K., Fang, P. C., Ding, M. S., Yang, D. & Jin, N. D. [2015b] “ Complex networks from experimental horizontal oil-water flows: Community structure detection versus flow pattern discrimination,” Phys. Lett. A 379, 790–797. Crossref, ISIGoogle Scholar
    • Gao, Z. K., Yang, Y. X., Fang, P. C., Jin, N. D., Xia, C. Y. & Hu, L. D. [2015c] “ Multi-frequency complex network from time series for uncovering oil-water flow structure,” Sci. Rep. 5, 8222. Crossref, ISIGoogle Scholar
    • Gao, Z. K., Yang, Y. X., Fang, P. C., Zou, Y., Xia, C. Y. & Du, M. [2015d] “ Multiscale complex network for analyzing experimental multivariate time series,” Europhys. Lett. 109, 30005. CrossrefGoogle Scholar
    • Gao, Z. K., Yang, Y. X., Zhai, L. S., Ding, M. S. & Jin, N. D. [2016] “ Characterizing slug to churn flow transition by using multivariate pseudo Wigner distribution and multivariate multiscale entropy,” Chem. Eng. J. 291, 74–81. Crossref, ISIGoogle Scholar
    • Lacasa, L., Luque, B., Ballesteros, F., Luque, J. & Nuno, J. C. [2008] “ From time series to complex networks: The visibility graph,” Proc. Natl. Acad. Sci. USA 105, 4972–4975. Crossref, ISIGoogle Scholar
    • Lawson, J. M. & Dawson, J. R. [2015] “ On velocity gradient dynamics and turbulent structure,” J. Fluid Mech. 780, 60–98. Crossref, ISIGoogle Scholar
    • Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. [2008] “ A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” J. Turbulence 9, 1–29. CrossrefGoogle Scholar
    • Li, Y., Chevillard, L., Eyink, G. & Meneveau, C. [2009] “ Matrix exponential-based closures for the turbulent subgrid-scale stress tensor,” Phys. Rev. E 79, 016305. Crossref, ISIGoogle Scholar
    • Liu, C., Zhou, W. X. & Yuan, W.-K. [2010] “ Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence,” Physica A 389, 2675–2681. Crossref, ISIGoogle Scholar
    • Manshour, P., Tabar, M. R. R. & Peinke, J. [2015] “ Fully developed turbulence in the view of horizontal visibility graphs,” J. Stat. Mech. 8, P08031. Google Scholar
    • Marwan, N., Donges, J. F., Zou, Y., Donner, R. V. & Kurths, J. [2009] “ Complex network approach for recurrence analysis of time series,” Phys. Lett. A 373, 4246–4254. Crossref, ISIGoogle Scholar
    • Mishra, M. M., Liu, X., Skote, M. & Fu, C.-W. [2014] “ Kolmogorov spectrum consistent optimization for multi-scale flow decomposition,” Phys. Fluids 26, 055106. Crossref, ISIGoogle Scholar
    • Murugesan, M. & Sujith, R. I. [2015] “ Combustion noise is scale-free: Transition from scale-free to order at the onset of thermoacoustic instability,” J. Fluid Mech. 772, 225–245. Crossref, ISIGoogle Scholar
    • Newman, M. E. J. & Girvan, M. [2004] “ Finding and evaluating community structure in networks,” Phys. Rev. E 69, 026113. Crossref, ISIGoogle Scholar
    • Newman, M. E. J. [2006] “ Modularity and community structure in networks,” Proc. Natl. Acad. Sci. USA 103, 8577–8582. Crossref, ISIGoogle Scholar
    • Newman, M. E. J. [2010] Networks: An Introduction (Oxford University Press). CrossrefGoogle Scholar
    • Perlman, E., Burns, R., Li, Y. & Meneveau, C. [2007] “ Data exploration of turbulence simulations using a database cluster,” SC’ 07 Proc. 2007 ACM/IEEE Conf. Supercomputing. Google Scholar
    • Scarsoglio, S., Laio, F. & Ridolfi, L. [2013] “ Climate dynamics: A network-based approach for the analysis of global precipitation,” PLoS One 8, e71129. Crossref, ISIGoogle Scholar
    • Shirazi, A. H., Jafari, G. R., Davoudi, J., Peinke, J., Tabar, M. R. R. & Sahimi, M. [2009] “ Mapping stochastic processes onto complex networks,” J. Stat. Mech. 7, P07046. Crossref, ISIGoogle Scholar
    • Sivakumar, B. & Woldemeskel, F. M. [2014] “ Complex networks for streamflow dynamics,” Hydrol. Earth Syst. Sci. 18, 4565–4578. Crossref, ISIGoogle Scholar
    • Stam, C. J. & Reijneveld, J. C. [2007] “ Graph theoretical analysis of complex networks in the brain,” Nonlin. Biomed. Phys. 1, 3. CrossrefGoogle Scholar
    • Steinhaeuser, K., Ganguly, A. R. & Chawla, N. V. [2012] “ Multivariate and multiscale dependence in the global climate system revealed through complex networks,” Clim. Dyn. 39, 889–895. Crossref, ISIGoogle Scholar
    • Tsonis, A. A. & Swanson, K. L. [2008] “ On the role of atmospheric teleconnections in climate,” J. Clim. 21, 2990–3001. Crossref, ISIGoogle Scholar
    • Warhaft, Z. [2002] “ Turbulence in nature and in the laboratory,” Proc. Natl. Acad. Sci. USA 99, 2481–2486. Crossref, ISIGoogle Scholar
    • Watts, D. J. & Strogatz, S. H. [1998] “ Collective dynamics of ‘small-world’ networks,” Nature 393, 440–442. Crossref, ISIGoogle Scholar
    • Yamasaki, K., Gozolchiani, A. & Havlin, S. [2008] “ Climate networks around the globe are significantly affected by el niño,” Phys. Rev. Lett. 100, 228501. Crossref, ISIGoogle Scholar
    • Yang, Y. & Yang, H. [2008] “ Complex network-based time series analysis,” Physica A 387, 1381–1386. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos