World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Can a Pseudo Periodic Orbit Avoid a Catastrophic Transition?

    https://doi.org/10.1142/S0218127415501850Cited by:5 (Source: Crossref)

    We propose a resilient control scheme to avoid catastrophic transitions associated with saddle-node bifurcations of periodic solutions. The conventional feedback control schemes related to controlling chaos can stabilize unstable periodic orbits embedded in strange attractors or suppress bifurcations such as period-doubling and Neimark–Sacker bifurcations whose periodic orbits continue to exist through the bifurcation processes. However, it is impossible to apply these methods directly to a saddle-node bifurcation since the corresponding periodic orbit disappears after such a bifurcation. In this paper, we define a pseudo periodic orbit which can be obtained using transient behavior right after the saddle-node bifurcation, and utilize it as reference data to compose a control input. We consider a pseudo periodic orbit at a saddle-node bifurcation in the Duffing equations as an example, and show its temporary attraction. Then we demonstrate the suppression control of this bifurcation, and show robustness of the control. As a laboratory experiment, a saddle-node bifurcation of limit cycles in the BVP oscillator is explored. A control input generated by a pseudo periodic orbit can restore a stable limit cycle which disappeared after the saddle-node bifurcation.

    References

    • 1. Celka, P. [1994] “ Experimental verification of Pyragas’s chaos control method applied to Chua’s circuit,” Int. J. Bifurcation and Chaos 4, 1703–1706. Link, Web of ScienceGoogle Scholar
    • 2. Chen, G. & Dong, X. [1993] “ On feedback control of chaotic continuous-time systems,” IEEE Trans. Circuits Syst.-I 40, 591–601. Crossref, Web of ScienceGoogle Scholar
    • 3. Chen, G. (ed.) [1999] Controlling Chaos and Bifurcations in Engineering Systems (CRC Press, Boca Raton). Google Scholar
    • 4. Chen, G., Hill, D. J. & Yu, X. (eds.) [2003] Bifurcation Control: Theory and Application, Lecture Notes on Computer Information Systems, Vol. 293 (Springer-Verlag, Berlin). CrossrefGoogle Scholar
    • 5. Chen, L., Liu, R., Liu, Z.-P., Li, M. & Aihara, K. [2012] “ Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers,” Scient. Rep. 2, 342-1–8. Web of ScienceGoogle Scholar
    • 6. Christini, D. J. & Collins, J. [1996] “ Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model,” Phys. Rev. E 53, 49–52. Crossref, Web of ScienceGoogle Scholar
    • 7. Diakonos, F. K., Schmelcher, P. & Biham, O. [1998] “ Systematic computation of the least unstable periodic orbits in chaotic attractors,” Phys. Rev. Lett. 81, 4349–4352. Crossref, Web of ScienceGoogle Scholar
    • 8. Fang, H. [1993] “ Suppression of period doubling in coupled nonlinear systems,” Phys. Lett. A 183, 376–378. Crossref, Web of ScienceGoogle Scholar
    • 9. FitzHugh, R. [1961] “ Impulses and physiological states in theoretical models of nerve membrane,” Biophys. J. 1, 445–466. Crossref, Web of ScienceGoogle Scholar
    • 10. Guckenheimer, H. & Holmes, P. [1983] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 42 (Springer-Verlag, NY). CrossrefGoogle Scholar
    • 11. Kaneko, K. & Tsuda, I. [2003] “ Chaotic itinerancy,” Chaos 13, 926–936. Crossref, Web of ScienceGoogle Scholar
    • 12. Kawakami, H. [1984] “ Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters,” IEEE Trans. Circuits Syst. 31, 248–260. CrossrefGoogle Scholar
    • 13. Nagumo, J., Arimoto, S. & Yoshizawa, S. [1962] “ An active pulse transmission line simulating nerve axon,” Proc. IRE 50, 2061–2070. Crossref, Web of ScienceGoogle Scholar
    • 14. Ogorzalek, M. [1993] “ Taming chaos: Part II — Control,” IEEE Trans. Circuits Syst.-I 40, 700–706. Crossref, Web of ScienceGoogle Scholar
    • 15. Ott, E., Grebogi, C. & Yorke, J. A. [1990] “ Controlling chaos,” Phys. Rev. Lett. 64, 1196–1199. Crossref, Web of ScienceGoogle Scholar
    • 16. Prasad, A. [2015] “ Existence of perpetual points in nonlinear dynamical systems and its applications,” Int. J. Bifurcation and Chaos 25, 1530005-1–10. Link, Web of ScienceGoogle Scholar
    • 17. Pyragas, K. [1992] “ Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170, 421–428. Crossref, Web of ScienceGoogle Scholar
    • 18. Pyragas, K. [2006] “ Delayed feedback control of chaos,” Philos. Trans. A.: Math. Phys. Eng. Sci. 364, 2309–2334. Crossref, Web of ScienceGoogle Scholar
    • 19. Romeiras, F. J., Grebogi, C., Ott, E. & Dayawansa, W. P. [1992] “ Controlling chaotic dynamical systems,” Physica D 58, 165–192. Crossref, Web of ScienceGoogle Scholar
    • 20. Scheffer, M. [2009] Critical Transitions in Nature and Society (Princeton University Press, Princeton). CrossrefGoogle Scholar
    • 21. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M. & Sugihara, G. [2009] “ Early-warning signals for critical transitions,” Nature 461, 53–59. Crossref, Web of ScienceGoogle Scholar
    • 22. Thompson, J. M. T. & Stewart, H. B. [1986] Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists (John Wiley & Sons Ltd., Chichester and NY). Google Scholar
    • 23. Ueta, T. & Kawakami, H. [1995] “ Composite dynamical system for controlling chaos,” IEICE Trans. Fund. Electron. Commun. Comput. Sci. 78, 708–714. Google Scholar
    • 24. Ueta, T., Chen, G. & Kawabe, T. [2000] “ A simple approach to calculation and control of unstable periodic orbits in chaotic piecewise linear systems,” Int. J. Bifurcation and Chaos 11, 215–224. Link, Web of ScienceGoogle Scholar
    • 25. Ueta, T., Miyazaki, H., Kousaka, T. & Kawakami, H. [2004] “ Bifurcation of coupled BVP oscillators,” Int. J. Bifurcation and Chaos 14, 1305–1324. Link, Web of ScienceGoogle Scholar