World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Control of Multichaotic Systems Using the Extended OGY Method

    https://doi.org/10.1142/S0218127415500960Cited by:3 (Source: Crossref)

    This paper considers the problem of controlling coupled chaotic maps. Coupled chaotic maps or multichaotic subsystems are complex dynamical systems that consist of several chaotic sub-systems with interactions. The OGY methodology is extended to deal with the control of such systems. It is shown that the decentralized control design scheme in which the individual controllers share no information is not generally able to control multichaotic systems. Simulation results are used to support the main conclusions of the paper.

    References

    • E.   Bradley and R.   Mantilla , Chaos   8 , 596 ( 2002 ) . Crossref, Web of ScienceGoogle Scholar
    • B. I.   Epureanu and E. H.   Dowell , Physica D   139 , 87 ( 2000 ) . CrossrefGoogle Scholar
    • C.   Grebogi and Y.-C.   Lai , IEEE Trans. Circuits Syst.-I   44 , 971 ( 1997 ) . Crossref, Web of ScienceGoogle Scholar
    • M.   Henon , Commun. Math. Phys.   50 , 69 ( 1976 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Iplikci and Y.   Denizhan , Physica D   150 , 163 ( 2001 ) . Crossref, Web of ScienceGoogle Scholar
    • L.   Jentoft and Y.   Li , Stabilizing the Henon Map with the OGY Algorithm ( Olin College of Engineering , 2008 ) . Google Scholar
    • K.   Kaneko and I.   Tsuda , Complex Systems — Chaos and Beyond: A Constructive Approach with Applications in Life Science ( Springer , 2001 ) . CrossrefGoogle Scholar
    • J. M.   Maciejowski , Multivariable Feedback Design ( Addison Wesley , 1989 ) . Google Scholar
    • H.   Matano , S.   Ushiki and M.   Yamagut , Discrete Population Models and Chaos , Lecture Notes in Numerical and Applied Analysis   2 ( 1980 ) . Google Scholar
    • E.   Ott , C.   Grebogi and J. A.   Yorke , Phys. Rev. Lett.   64 , 1196 ( 1990 ) . Crossref, Web of ScienceGoogle Scholar
    • A. S.   Paula and M. A.   Savi , Chaos Solit. Fract.   40 , 1376 ( 2009 ) . Crossref, Web of ScienceGoogle Scholar
    • Paula, A. S. [2010] "Control of chaos in mechanical systems," PhD thesis, Federal Rio de Janeiro University . Google Scholar
    • A. S.   Paula and M. A.   Savi , Int. J. Non-Lin. Mech.   46 , 1076 ( 2011 ) . Crossref, Web of ScienceGoogle Scholar
    • S.   Skogestad and I.   Postlethwaite , Multivariable Feedback Control: Analysis and Design ( Wiley , 2005 ) . Google Scholar
    • Witvoet, G. [2005] "Control of chaotic dynamical systems using OGY," Traineeship Report, Eindhoven University of Technology . Google Scholar
    • H.   Zhang , D.   Liu and Z.   Wang , Controlling Chaos — Suppression, Synchronization and Chaotification ( Springer , 2009 ) . Google Scholar