Controlling Chaos of Hybrid Systems by Variable Threshold Values
Abstract
We try to stabilize unstable periodic orbits embedded in a given chaotic hybrid dynamical system by a perturbation of a threshold value. In conventional chaos control methods, a control input is designed by state-feedback, which is proportional to the difference between the target orbit and the current state, and it is applied to a specific system parameter or the state as a small perturbation. During a transition state, the control system consumes a certain control energy given by the integration of such perturbations. In our method, we change the threshold value dynamically to control the chaotic orbit. Unlike the OGY method and the delayed feedback control, no actual control input is added into the system. The state-feedback is utilized only to determine the dynamic threshold value, thus the orbit starting from the current threshold value reaches the next controlled threshold value without any control energy. We obtain the variation of the threshold value from the composite Poincaré map, and the controller is designed by the linear feedback theory with this variation. We demonstrate this method in simple hybrid chaotic systems and show its control performances by evaluating basins of attraction.
References
- Phil. Trans. Roy. Soc. A 368 , 4893 ( 2010 ) . Crossref, Web of Science, Google Scholar
- Cancer 71 , 2782 ( 1993 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 58 , 2387 ( 1987 ) . Crossref, Web of Science, Google Scholar
-
M. Bernardo , Piecewise-Smooth Dynamical Systems: Theory and Applications ( Springer-Verlag , London, UK , 2008 ) . Google Scholar - J. Theoret. Biol. 264 , 517 ( 2010 ) . Crossref, Web of Science, Google Scholar
- IEICE Trans. Fund. E 91-A , 2240 ( 2008 ) . Crossref, Web of Science, Google Scholar
D. Ito , T. Ueta and K. Aihara , Bifurcation analysis of two coupled Izhikevich oscillators, Proc. NOLTA2010 (Poland, 2010) pp. 627–630. Google Scholar- IEEE Trans. Neural Netw. 14 , 1569 ( 2003 ) . Crossref, Web of Science, Google Scholar
- IEEE Trans. Circuits Syst. CAS 46 , 878 ( 1999 ) . Crossref, Web of Science, Google Scholar
T. Kousaka , Analysis of border-collision bifurcation in a simple circuit, Proc. ISCAS 2000 (Geneva, 2000) pp. 481–484. Google Scholar- Electron. Lett. 37 , 1 ( 2001 ) . Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 12 , 1111 ( 2002 ) . Link, Web of Science, Google Scholar
- Chaos Solit. Fract. 27 , 1019 ( 2006 ) . Crossref, Web of Science, Google Scholar
-
R. Leine and H. Nijmeijer , Dynamics and Bifurcations of Non-Smooth Mechanical Systems ( Springer-Verlag , Berlin , 2004 ) . Crossref, Google Scholar - Phys. Rev. E 68 , 016210 ( 2003 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 83 , 2175 ( 1999 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 64 , 1196 ( 1990 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. E 70 , 016204 ( 2004 ) . Crossref, Web of Science, Google Scholar
- Chaos Solit. Fract. 27 , 395 ( 2006 ) . Crossref, Web of Science, Google Scholar
- Phys. Lett. A 170 , 421 ( 1992 ) . Crossref, Web of Science, Google Scholar
- Phil. Trans. Roy. Soc. A 364 , 2309 ( 2006 ) . Crossref, Web of Science, Google Scholar
- Pramana 41 , 295 ( 1993 ) . Crossref, Web of Science, Google Scholar
- Physica D 67 , 282 ( 1993 ) . Crossref, Web of Science, Google Scholar
- Physica D 58 , 165 ( 1992 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 68 , 1259 ( 1992 ) . Crossref, Web of Science, Google Scholar
- New J. Phys. 12 , 113038 ( 2010 ) . Crossref, Web of Science, Google Scholar
- Phys. Rev. E 67 , 036203 ( 2003 ) . Crossref, Web of Science, Google Scholar
- Dyn. Contin. Discr. Impuls. Syst. 16 , 849 ( 2009 ) . Google Scholar
- Phil. Trans. Roy. Soc. A 368 , 5029 ( 2010 ) . Crossref, Web of Science, Google Scholar
- IEICE Trans. Fund. E78-A , 708 ( 1995 ) . Google Scholar
- Phys. Rev. E 79 , 026217 ( 2009 ) . Crossref, Web of Science, Google Scholar