World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

AN APPLICATION OF REGULAR CHAIN THEORY TO THE STUDY OF LIMIT CYCLES

    In this paper, the theory of regular chains and a triangular decomposition method relying on modular computations are presented in order to symbolically solve multivariate polynomial systems. Based on the focus values for dynamic systems obtained by using normal form theory, this method is applied to compute the limit cycles bifurcating from Hopf critical points. In particular, a quadratic planar polynomial system is used to demonstrate the solving process and to show how to obtain center conditions. The modular computations based on regular chains are applied to a cubic planar polynomial system to show the computation efficiency of this method, and to obtain all real solutions of nine limit cycles around a singular point. To the authors' best knowledge, this is the first article to simultaneously provide a complete, rigorous proof for the existence of nine limit cycles in a cubic system and all real solutions for these limit cycles.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos