ON AUTONOMOUS AND NONAUTONOMOUS MODIFIED HYPERCHAOTIC COMPLEX LÜ SYSTEMS
Abstract
In this paper autonomous and nonautonomous modified hyperchaotic complex Lü systems are proposed. Our systems have been generated by using state feedback and complex periodic forcing. The basic properties of these systems are studied. Parameters range for hyperchaotic attractors to exist are calculated. These systems have very rich dynamics in a wide range of parameters. The analytical results are tested numerically and excellent agreement is found. A circuit diagram is designed for one of these hyperchaotic complex systems and simulated using Matlab/Simulink to verify the hyperchaotic behavior.
References
- Int. J. Circuits Theor. Appl. 30, 625 (2002). Web of Science, Google Scholar
- Nonlin. Dyn. 59, 515 (2010), DOI: 10.1007/s11071-009-9558-0. Crossref, Web of Science, Google Scholar
- Physica A 364, 103 (2006). Crossref, Web of Science, Google Scholar
- Phys. Lett. A 374, 1368 (2010), DOI: 10.1016/j.physleta.2010.01.030. Crossref, Web of Science, Google Scholar
- Physica D 7, 126 (1983). Crossref, Web of Science, Google Scholar
- Physica D 5, 108 (1982), DOI: 10.1016/0167-2789(82)90053-7. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 9, 705 (1999). Link, Web of Science, Google Scholar
- Int. J. Control 72, 882 (1999), DOI: 10.1080/002071799220614. Crossref, Web of Science, Google Scholar
- IEEE Trans. Circuits Systems II 51, 665 (2004), DOI: 10.1109/TCSII.2004.838657. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 15, 3367 (2005). Link, Web of Science, Google Scholar
- IEEE Trans. Circuits Syst.-II 52, 204 (2005). Web of Science, Google Scholar
- Int. J. Mod. Phys. C 12, 889 (2001). Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 14, 3821 (2004). Link, Web of Science, Google Scholar
- Int. J. Appl. Math. Stat. 12, 90 (2007). Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 17, 4295 (2007). Link, Web of Science, Google Scholar
- Int. J. Mod. Phys. C 19, 1477 (2008). Link, Web of Science, Google Scholar
- J. Phys. A: Math. Theor. 41, 055104 (2008), DOI: 10.1088/1751-8113/41/5/055104. Crossref, Web of Science, Google Scholar
- Nonlin. Dyn. 58, 725 (2009), DOI: 10.1007/s11071-009-9513-0. Crossref, Web of Science, Google Scholar
- J. Dyn. Syst. 24, 63 (2009), DOI: 10.1080/14689360802438298. Crossref, Web of Science, Google Scholar
- IEEE Trans. CAS 33, 1143 (1986), DOI: 10.1109/TCS.1986.1085862. Crossref, Web of Science, Google Scholar
- Physica D 99, 45 (1996), DOI: 10.1016/S0167-2789(96)00129-7. Crossref, Web of Science, Google Scholar
- Phys. Lett. A 71, 155 (1979). Crossref, Web of Science, Google Scholar
- Physica A 371, 260 (2006). Crossref, Web of Science, Google Scholar
- Nonlin. Dyn. 59, 455 (2010), DOI: 10.1007/s11071-009-9552-6. Crossref, Web of Science, Google Scholar
- J. Opt. Soc. Amer. B 2, 18 (1985), DOI: 10.1364/JOSAB.2.000018. Crossref, Web of Science, Google Scholar