World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

COMPLETE PERIODIC SYNCHRONIZATION OF DELAYED NEURAL NETWORKS WITH DISCONTINUOUS ACTIVATIONS

    Recently, the synchronization issue in chaotic systems has become a hot topic in nonlinear dynamics and has aroused great interest among researchers due to the theoretical significance and potential applications. In this paper, complete periodic synchronization is considered for the delayed neural networks with discontinuous activation functions. Under the framework of Filippov solution, a novel control method is presented by using differential inclusions theory, nonsmooth Lyapunov method and linear matrix inequality (LMI) approach. Based on a newly obtained necessary and sufficient condition, several criteria are derived to ensure the global asymptotical stability of the error system, and thus the response system synchronizes with the drive system. Moreover, the estimation gains are obtained. With these new and effective methods, complete synchronization is achieved. Simulation results are given to illustrate the theoretical results.

    References