World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

LOCALIZING BOUNDS FOR COMPACT INVARIANT SETS OF NONLINEAR SYSTEMS POSSESSING FIRST INTEGRALS WITH APPLICATIONS TO HAMILTONIAN SYSTEMS

    https://doi.org/10.1142/S0218127410026629Cited by:2 (Source: Crossref)

    In this paper, we study the localization problem of compact invariant sets of nonlinear systems possessing first integrals by using the first order extremum conditions and positive definite polynomials. In the case of natural polynomial Hamiltonian systems, our results include those in [Starkov, 2008] as a special case. This paper discusses the application to studies of the generalized Yang–Mills Hamiltonian system and the Hamiltonian system describing dynamics of hydrogenic atoms in external fields.

    References

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos