World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
THEME SECTION: Complex Networks — Tutorials and ReviewsNo Access


    A generalized Statistical Complexity Measure (SCM) is a functional that characterizes the probability distribution P associated to the time series generated by a given dynamical system. It quantifies not only randomness but also the presence of correlational structures. We review here several fundamental issues in such a respect, namely, (a) the selection of the information measure ; (b) the choice of the probability metric space and associated distance ; (c) the question of defining the so-called generalized disequilibrium ; (d) the adequate way of picking up the probability distribution P associated to a dynamical system or time series under study, which is indeed a fundamental problem. In this communication we show (point d) that sensible improvements in the final results can be expected if the underlying probability distribution is "extracted" via appropriate consideration regarding causal effects in the system's dynamics.


    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos