World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE EXISTENCE AND CLASSIFICATION OF SYNCHRONY-BREAKING BIFURCATIONS IN REGULAR HOMOGENEOUS NETWORKS USING LATTICE STRUCTURES

    https://doi.org/10.1142/S0218127409025079Cited by:11 (Source: Crossref)

    For regular homogeneous networks with simple eigenvalues (real or complex), all possible explicit forms of lattices of balanced equivalence relations can be constructed by introducing lattice generators and lattice indices [Kamei, 2009]. Balanced equivalence relations in the lattice correspond to clusters of partially synchronized cells in a network. In this paper, we restrict attention to regular homogeneous networks with simple real eigenvalues, and one-dimensional internal dynamics for each cell. We first show that lattice elements with nonzero indices indicate the existence of codimension-one synchrony-breaking steady-state bifurcations, and furthermore, the positions of such lattice elements give the number of partially synchronized clusters. Using four-cell regular homogeneous networks as an example, we then classify a large number of regular homogeneous networks into a small number of lattice structures, in which networks share an equivalent clustering type. Indeed, some of these networks even share the same generic bifurcation structure. This classification leads us to explore how regular homogeneous networks that share synchrony-breaking bifurcation structure are topologically related.

    References

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos