THE EXISTENCE AND CLASSIFICATION OF SYNCHRONY-BREAKING BIFURCATIONS IN REGULAR HOMOGENEOUS NETWORKS USING LATTICE STRUCTURES
Abstract
For regular homogeneous networks with simple eigenvalues (real or complex), all possible explicit forms of lattices of balanced equivalence relations can be constructed by introducing lattice generators and lattice indices [Kamei, 2009]. Balanced equivalence relations in the lattice correspond to clusters of partially synchronized cells in a network. In this paper, we restrict attention to regular homogeneous networks with simple real eigenvalues, and one-dimensional internal dynamics for each cell. We first show that lattice elements with nonzero indices indicate the existence of codimension-one synchrony-breaking steady-state bifurcations, and furthermore, the positions of such lattice elements give the number of partially synchronized clusters. Using four-cell regular homogeneous networks as an example, we then classify a large number of regular homogeneous networks into a small number of lattice structures, in which networks share an equivalent clustering type. Indeed, some of these networks even share the same generic bifurcation structure. This classification leads us to explore how regular homogeneous networks that share synchrony-breaking bifurcation structure are topologically related.
References
- Discr. Contin. Dyn. Syst. Supplement 1 (2007). Google Scholar
- Physica D 238, 137 (2009), DOI: 10.1016/j.physd.2008.10.006. Crossref, Web of Science, Google Scholar
- Rev. Mod. Phys. 74, 47 (2002), DOI: 10.1103/RevModPhys.74.47. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 18, 407 (2008). Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 15, 2361 (2005). Link, Web of Science, Google Scholar
- Nature Rev. Genet. 8, 450 (2007), DOI: 10.1038/nrg2102. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 16, 559 (2006). Link, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 17, 935 (2007). Link, Web of Science, Google Scholar
- Phys. Rep. 424, 175 (2002), DOI: 10.1016/j.physrep.2005.10.009. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 17, 2201 (2007). Link, Web of Science, Google Scholar
- J. Funct. Anal. 8, 321 (1971), DOI: 10.1016/0022-1236(71)90015-2. Crossref, Google Scholar
-
B. A. Davey and H. A. Priestley , Introduction to Lattices and Order ( Cambridge University Press , Cambridge , 1990 ) . Google Scholar - Nonlinearity 18, 1003 (2005), DOI: 10.1088/0951-7715/18/3/004. Crossref, Web of Science, Google Scholar
- SIAM J. Appl. Dyn. Syst. 8, 40 (2009), DOI: 10.1137/070704873. Crossref, Web of Science, Google Scholar
- Bull. Amer. Math. Soc. 43, 305 (2006), DOI: 10.1090/S0273-0979-06-01108-6. Crossref, Web of Science, Google Scholar
- Golubitsky, M. & Stewart, I. [2009] "Synchrony-breaking bifurcations at simple eigenvalues for regular networks," to appear . Google Scholar
- SIAM J. Appl. Dyn. Syst. 4, 78 (2005), DOI: 10.1137/040612634. Crossref, Web of Science, Google Scholar
- Genes to Cells 10, 1025 (2005), DOI: 10.1111/j.1365-2443.2005.00897.x. Crossref, Web of Science, Google Scholar
- Kamei, H. [2008] "Interplay between network topology and synchrony-breaking bifurcation: Four-cell coupled cell networks," PhD Thesis, University of Warwick . Google Scholar
- Int. J. Bifurcation and Chaos 19, 3691 (2009). Link, Web of Science, Google Scholar
- Nonlinearity 19, 2313 (2006), DOI: 10.1088/0951-7715/19/10/004. Crossref, Web of Science, Google Scholar
- Europhys. Lett. 78, 1 (2007), DOI: 10.1209/0295-5075/78/28001. Google Scholar
- Science 298, 824 (2005), DOI: 10.1126/science.298.5594.824. Crossref, Web of Science, Google Scholar
- J. Math. Biol. 55, 61 (2007), DOI: 10.1007/s00285-007-0099-1. Crossref, Web of Science, Google Scholar
- SIAM Rev. 45, 167 (2003), DOI: 10.1137/S003614450342480. Crossref, Web of Science, Google Scholar
- PloS. Biol. 3, 1881 (2005), DOI: 10.1371/journal.pbio.0030343. Web of Science, Google Scholar
- SIAM J. Appl. Dyn. Syst. 2, 609 (2003), DOI: 10.1137/S1111111103419896. Crossref, Web of Science, Google Scholar
- Math. Proc. Camb. Phil. Soc. 143, 165 (2007), DOI: 10.1017/S0305004107000345. Crossref, Web of Science, Google Scholar
- Int. J. Bifurcation and Chaos 12, 885 (2002). Link, Web of Science, Google Scholar
- Nonlinearity 18, 631 (2005), DOI: 10.1088/0951-7715/18/2/010. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Bifurcation & Chaos |