World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

CONSTRUCTION OF LATTICES OF BALANCED EQUIVALENCE RELATIONS FOR REGULAR HOMOGENEOUS NETWORKS USING LATTICE GENERATORS AND LATTICE INDICES

    Regular homogeneous networks are a class of coupled cell network, which comprises one type of cell (node) with one type of coupling (arrow), and each cell has the same number of input arrows (called the valency of the network). In coupled cell networks, robust synchrony (a flow-invariant polydiagonal) corresponds to a special kind of partition of cells, called a balanced equivalence relation. Balanced equivalence relations are determined solely by the network structure. It is well known that the set of balanced equivalence relations on a given finite network forms a complete lattice. In this paper, we consider regular homogeneous networks in which the internal dynamics of each cell is one-dimensional, and whose associated adjacency matrices have simple eigenvalues (real or complex). We construct explicit forms of lattices of balanced equivalence relations for such networks by introducing key building blocks, called lattice generators, along with integer numbers called lattice indices. The properties of lattice indices allow construction of all possible lattice structures for balanced equivalence relations of regular homogeneous networks of any number of cells with any valency. As an illustration, we show all 14 possible lattice structures of balanced equivalence relations for four-cell regular homogeneous networks.

    References

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos