LOCALIZATION OF COMPACT INVARIANT SETS OF NONLINEAR TIME-VARYING SYSTEMS
Abstract
In this paper we examine the localization problem of compact invariant sets of nonlinear time-varying systems with the differentiable right-side. We extend our results respecting the localization problem obtained earlier for time-invariant systems and apply them to a damped driven pendulum and the Vallis model with regard to the seasonal cycle.
References
- Discr. Contin. Dyn. Syst. Series B 5, 215 (2005). Web of Science, Google Scholar
-
G. L. Baker and J. P. Golub , Chaotic Dynamics ( Cambridge University Press , Cambridge , 1996 ) . Crossref, Google Scholar - IEEE Trans. Autom. Contr. 48, 1712 (2003), DOI: 10.1109/TAC.2003.817926. Crossref, Web of Science, Google Scholar
-
A. Isidori , Nonlinear Control Systems ( Springer-Verlag , New York , 1995 ) . Crossref, Google Scholar - Int. J. Bifurcation and Chaos 15, 743 (2005), DOI: 10.1142/S0218127405012454. Link, Web of Science, Google Scholar
- Phys. Lett. A 353, 383 (2006), DOI: 10.1016/j.physleta.2005.12.104. Crossref, Web of Science, Google Scholar
- Chinese Phys. 12, 381 (2003), DOI: 10.1088/1009-1963/12/4/307. Google Scholar
- Chaos 7, 680 (1997), DOI: 10.1063/1.166265. Crossref, Web of Science, Google Scholar
- Chaos Solit. Fract. 23, 981 (2005). Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 74, 1974 (1995), DOI: 10.1103/PhysRevLett.74.1974. Crossref, Web of Science, Google Scholar
- Strozzi, D. [1999] "On the origin of interannual and irregular behavior in the El Ni no properties," Report of Department of Physics, Princeton University, available at the WEB . Google Scholar
- J. Geophys. Res. 93, 13979 (1988), DOI: 10.1029/JC093iC11p13979. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Bifurcation & Chaos |