EXPONENTIAL SYNCHRONIZATION OF NONLINEAR COUPLED DYNAMICAL NETWORKS
Abstract
In this paper, we discuss exponential synchronization of nonlinear coupled dynamical networks. Sufficient conditions for both local and global exponential synchronization are given. These conditions indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold.
References
- Chaos 7, 395 (1997), DOI: 10.1063/1.166213. Crossref, ISI, Google Scholar
- Chaos Solit. Fract. 21, 101 (2004), DOI: 10.1016/j.chaos.2003.10.004. Crossref, ISI, Google Scholar
-
P. A. Horn and C. R. Johnson , Matrix Analysis ( Cambridge University Press , NY , 1985 ) . Crossref, Google Scholar - IEEE Trans. CAS-1 51, 2491 (2004), DOI: 10.1109/TCSI.2004.838308. Crossref, ISI, Google Scholar
- Physica D 213, 214 (2006), DOI: 10.1016/j.physd.2005.11.009. Crossref, ISI, Google Scholar
-
R. K. Miller and A. N. Michel , Ordinary Differential Equations ( Academic Press , NY , 1982 ) . Crossref, Google Scholar -
H. Minc , Nonnegative Matrices ( Wiley , NY , 1988 ) . Google Scholar - IEEE Trans. Circuits Syst.-I 49, 54 (2002), DOI: 10.1109/81.974874. Crossref, ISI, Google Scholar
- Int. J. Bifurcation and Chaos 12, 187 (2002), DOI: 10.1142/S0218127402004292. Link, ISI, Google Scholar
- IEEE Trans. Circuits Syst.-I 42, 430 (1995), DOI: 10.1109/81.404047. ISI, Google Scholar
- Int. J. Bifurcation and Chaos 7, 645 (1997), DOI: 10.1142/S0218127497000443. Link, ISI, Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Check out our Bifurcation & Chaos |


