HOW REAL ARE REAL NUMBERS?
Abstract
We discuss mathematical and physical arguments against continuity and in favor of discreteness, with particular emphasis on the ideas of Emile Borel [1871–1956].
References
E. Borel , Leçons sur la Théorie des Fonctions (Gabay, Paris, 1950) p. 161, 275. Google ScholarE. Borel , Les Nombres Inaccessibles (Gauthier-Villars, Paris, 1952) p. 21. Google ScholarE. Borel , Space and Time (Dover, Mineola, 1960) pp. 212–214. Google Scholar-
G. Chaitin , Meta Math! ( Pantheon , NY , 2005 ) . Google Scholar -
B. J. Copeland , The Essential Turing ( Clarendon Press , Oxford , 2004 ) . Crossref, Google Scholar R. Courant and H. Robbins , What is Mathematics? (Oxford University Press, NY, 1947) pp. 79–83. Google Scholar- Fredkin, E. [2004] http://www.digitalphilosophy.org . Google Scholar
I. James , Remarkable Mathematicians (Cambridge University Press, Cambridge, 2002) pp. 283–292. Google ScholarL. Smolin , Three Roads to Quantum Gravity (Weidenfeld & Nicolson, London, 2000) pp. 95–105. Google ScholarV. Tasić , Mathematics and the Roots of Postmodern Thought (Oxford University Press, NY, 2001) p. 52, 81–82. Crossref, Google Scholar-
S. Wolfram , A New Kind of Science ( Wolfram Media , Champaign , 2002 ) . Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Bifurcation & Chaos |