World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

HOW REAL ARE REAL NUMBERS?

    https://doi.org/10.1142/S0218127406015726Cited by:5 (Source: Crossref)

    We discuss mathematical and physical arguments against continuity and in favor of discreteness, with particular emphasis on the ideas of Emile Borel [1871–1956].

    References

    • E. Borel, Leçons sur la Théorie des Fonctions (Gabay, Paris, 1950) p. 161, 275. Google Scholar
    • E. Borel, Les Nombres Inaccessibles (Gauthier-Villars, Paris, 1952) p. 21. Google Scholar
    • E. Borel, Space and Time (Dover, Mineola, 1960) pp. 212–214. Google Scholar
    • G.   Chaitin , Meta Math! ( Pantheon , NY , 2005 ) . Google Scholar
    • B. J.   Copeland , The Essential Turing ( Clarendon Press , Oxford , 2004 ) . CrossrefGoogle Scholar
    • R. Courant and H. Robbins, What is Mathematics? (Oxford University Press, NY, 1947) pp. 79–83. Google Scholar
    • Fredkin, E. [2004] http://www.digitalphilosophy.org . Google Scholar
    • I. James, Remarkable Mathematicians (Cambridge University Press, Cambridge, 2002) pp. 283–292. Google Scholar
    • L. Smolin, Three Roads to Quantum Gravity (Weidenfeld & Nicolson, London, 2000) pp. 95–105. Google Scholar
    • V. Tasić, Mathematics and the Roots of Postmodern Thought (Oxford University Press, NY, 2001) p. 52, 81–82. CrossrefGoogle Scholar
    • S.   Wolfram , A New Kind of Science ( Wolfram Media , Champaign , 2002 ) . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos