World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ON THE ATTRACTORS OF TWO-DIMENSIONAL RAYLEIGH OSCILLATORS INCLUDING NOISE

    https://doi.org/10.1142/S0218127405014271Cited by:12 (Source: Crossref)

    We study sustained oscillations in two-dimensional oscillator systems driven by Rayleigh-type negative friction. In particular, we investigate the influence of mismatch of the two frequencies. Further we study the influence of external noise and nonlinearity of the conservative forces. Our consideration is restricted to the case that the driving is rather weak and that the forces show only weak deviations from radial symmetry. For this case we provide results for the attractors and the bifurcations of the system. We show that for rational relations of the frequencies the system develops several rotational excitations with right/left symmetry, corresponding to limit cycles in the four-dimensional phase space. The corresponding noisy distributions have the form of hoops or tires in the four-dimensional space. For irrational frequency relations, as well as for increasing strength of driving or noise the periodic excitations are replaced by chaotic oscillations.

    References

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos