World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

BIFURCATION OF LIMIT CYCLES FROM A FOUR-DIMENSIONAL CENTER IN CONTROL SYSTEMS

    We study the bifurcation of limit cycles from the periodic orbits of a four-dimensional center in a class of piecewise linear differential systems, which appears in a natural way in control theory. Our main result shows that three is an upper bound for the number of limit cycles, up to first-order expansion of the displacement function with respect to the small parameter. Moreover, this upper bound is reached. For proving this result we use the averaging method in a form where the differentiability of the system is not needed.

    References

    • A. Buică and J. Llibre, Bull. Sci. Math. 128, 7 (2004). Crossref, ISIGoogle Scholar
    • V. Carmonaet al., IEEE Trans. Circuits Syst.-I 49, 609 (2002). Crossref, ISIGoogle Scholar
    • S.-N.   Chow and J.   Hale , Methods of Bifurcation Theory ( Springer-Verlag , Berlin , 1982 ) . CrossrefGoogle Scholar
    • E. Freire, E. Ponce and J. Ros, Int. J. Bifurcation and Chaos 9, 895 (1999). Link, ISIGoogle Scholar
    • J.   Guckenheimer and P.   Holmes , Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields ( Springer-Verlag , Berlin , 1983 ) . CrossrefGoogle Scholar
    • M. Han, Acta Math. Appl. Sin. 21, 1 (1998). ISIGoogle Scholar
    • M. Han, K. Jiang and D. Green Jr., Nonlin. Anal. 36, 319 (1999). Crossref, ISIGoogle Scholar
    • J. Llibre and E. Ponce, Dyn. Stab. Syst. 11, 49 (1996). CrossrefGoogle Scholar
    • J. Llibre and J. Sotomayor, Nonlin. Anal. TMA 27, 1177 (1996). Crossref, ISIGoogle Scholar
    • J. Llibre and E. Ponce, Int. J. Bifurcation and Chaos 13, 895 (2003). Link, ISIGoogle Scholar
    • J. Llibre, E. Ponce and X. Zhang, Nonlin. Anal. 54, 977 (2003). Crossref, ISIGoogle Scholar
    • N. G.   Lloyd , Degree Theory ( Cambridge University Press , 1978 ) . Google Scholar
    • Teruel, A. [2000] Clasificación Topológica de una Familia de Campos Vectoriales Lineales a Trozos Simétricos en el Plano (The Topological Classification of a Family of Planar Piecewise Linear Systems) (in Spanish), PhD thesis, Universitat Autònoma de Barcelona . Google Scholar
    • F.   Verhulst , Nonlinear Differential Equations and Dynamical Systems , 2nd edn. , Universitext ( Springer , 1996 ) . CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos