BIFURCATION OF LIMIT CYCLES FROM A FOUR-DIMENSIONAL CENTER IN CONTROL SYSTEMS
Abstract
We study the bifurcation of limit cycles from the periodic orbits of a four-dimensional center in a class of piecewise linear differential systems, which appears in a natural way in control theory. Our main result shows that three is an upper bound for the number of limit cycles, up to first-order expansion of the displacement function with respect to the small parameter. Moreover, this upper bound is reached. For proving this result we use the averaging method in a form where the differentiability of the system is not needed.
References
- Bull. Sci. Math. 128, 7 (2004). Crossref, ISI, Google Scholar
- IEEE Trans. Circuits Syst.-I 49, 609 (2002). Crossref, ISI, Google Scholar
-
S.-N. Chow and J. Hale , Methods of Bifurcation Theory ( Springer-Verlag , Berlin , 1982 ) . Crossref, Google Scholar - Int. J. Bifurcation and Chaos 9, 895 (1999). Link, ISI, Google Scholar
-
J. Guckenheimer and P. Holmes , Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields ( Springer-Verlag , Berlin , 1983 ) . Crossref, Google Scholar - Acta Math. Appl. Sin. 21, 1 (1998). ISI, Google Scholar
- Nonlin. Anal. 36, 319 (1999). Crossref, ISI, Google Scholar
- Dyn. Stab. Syst. 11, 49 (1996). Crossref, Google Scholar
- Nonlin. Anal. TMA 27, 1177 (1996). Crossref, ISI, Google Scholar
- Int. J. Bifurcation and Chaos 13, 895 (2003). Link, ISI, Google Scholar
- Nonlin. Anal. 54, 977 (2003). Crossref, ISI, Google Scholar
-
N. G. Lloyd , Degree Theory ( Cambridge University Press , 1978 ) . Google Scholar - Teruel, A. [2000] Clasificación Topológica de una Familia de Campos Vectoriales Lineales a Trozos Simétricos en el Plano (The Topological Classification of a Family of Planar Piecewise Linear Systems) (in Spanish), PhD thesis, Universitat Autònoma de Barcelona . Google Scholar
-
F. Verhulst , Nonlinear Differential Equations and Dynamical Systems , 2nd edn. ,Universitext ( Springer , 1996 ) . Crossref, Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Check out our Bifurcation & Chaos |


