World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

BIFURCATION OF INVARIANT CONES IN PIECEWISE LINEAR HOMOGENEOUS SYSTEMS

    Invariant surfaces in three-dimensional continuous piecewise linear homogeneous systems with two pieces separated by a plane are detected. The Poincaré map associated to this plane transforms half-straight lines passing through the origin into half-straight lines of the same type. The invariant half-straight lines under this map determine invariant cones for which the existence, stability and bifurcation are studied. This analysis lead us to consider some questions about the topological type and stability of the origin.

    References

    • V. N.   Afanas'ev , V. B.   Kolmanosvskii and V. R.   Nosov , Mathematical Theory of Control Systems Design ( Kluwer Academic Publishers , 1995 ) . Google Scholar
    • A. A.   Andronov , A.   Vitt and S.   Khaikin , Theory of Oscillations ( Pergamon Press , Oxford , 1966 ) . CrossrefGoogle Scholar
    • A. Arneodo, P. Coullet and C. Tresser, Commun. Math. Phys. 79, 573 (1981). Crossref, ISIGoogle Scholar
    • S.   Barnet and R. G.   Cameron , Introduction to Mathematical Control Theory ( Oxford University Press , NY , 1985 ) . Google Scholar
    • S. Busenberg and P. Van Den Driessche, J. Math. Anal. Appl. 172, 463 (1993). Crossref, ISIGoogle Scholar
    • Carmona, V. [2002] Bifurcaciones en Sistemas Lineales a Trozos, Ph. D. Dissertation, Universidad de Sevilla (in Spanish) . Google Scholar
    • V. Carmonaet al., IEEE Trans. Circuits Syst.-I: Fund. Th. Appl. 49, 609 (2002). Crossref, ISIGoogle Scholar
    • V. Carmonaet al., IMA J. Appl. Math. 69, 71 (2004). Crossref, ISIGoogle Scholar
    • E. Freireet al., Int. J. Bifurcation and Chaos 8, 2073 (1998). Link, ISIGoogle Scholar
    • E. Freireet al., Int. J. Bifurcation and Chaos 8, 1675 (2002). ISIGoogle Scholar
    • J.   Guckenheimer and P.   Holmes , Nonlinear Oscillationsô Dynamical Systemsô and Bifurcations of Vector Fields ( Springer-Verlag , NY , 1985 ) . Google Scholar
    • K. P. Hadeler, J. Diff. Eqs. 95, 183 (1992). Crossref, ISIGoogle Scholar
    • C. Kahlert and O. E. Rossler, Z. Naturforsch-A 40, 1011 (1985). CrossrefGoogle Scholar
    • C. Kahlert, J. Circuit Th. Appl. 16, 11 (1988). Crossref, ISIGoogle Scholar
    • J. A. Schwartz, Amer. J. Math. 85, 225 (1963). Google Scholar
    • Z. Zhang et al. , Qualitative Theory of Differential Equations , Translations of Mathematical Monographs   101 ( American Mathematical Society , Providence, RI , 1992 ) . Google Scholar