World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A SURVEY OF METHODS FOR COMPUTING (UN)STABLE MANIFOLDS OF VECTOR FIELDS

    https://doi.org/10.1142/S0218127405012533Cited by:201 (Source: Crossref)

    The computation of global invariant manifolds has seen renewed interest in recent years. We survey different approaches for computing a global stable or unstable manifold of a vector field, where we concentrate on the case of a two-dimensional manifold. All methods are illustrated with the same example — the two-dimensional stable manifold of the origin in the Lorenz system.

    References

    • R. H.   Abraham and C. D.   Shaw , Dynamics — The Geometry of Behavior, Part Three: Global Behavior ( Aerial Press , Santa Cruz , 1985 ) . Google Scholar
    • E. L. Allgower and K. Georg, Handbook of Numerical Analysis, Vol. 5, Handbook of Numerical Analysis 5, eds. P. G. Ciarlet and J. L. Lions (North Holland Publishing, 1996) pp. 3–207. Google Scholar
    • U. M.   Ascher , R. M. M.   Mattheij and R. D.   Russell , Numerical Solution of Boundary Value Problems for Ordinary Differential Equations ( SIAM , 1995 ) . CrossrefGoogle Scholar
    • A. Backet al., Notices Amer. Math. Soc. 39, 303 (1992). Google Scholar
    • W.-J. Beynet al., Handbook of Dynamical Systems 2, ed. B. Fiedler (Elsevier Science, 2002) pp. 149–219. CrossrefGoogle Scholar
    • C. De Boor and B. Swartz, SIAM J. Numer. Anal. 10, 582 (1973). Crossref, Web of ScienceGoogle Scholar
    • M. Dellnitz and A. Hohmann, Nonlinear Dynamical Systems and Chaos PNLDE 19, eds. H. W. Broeret al. (Birkhäuser, Basel, 1996) pp. 449–459. CrossrefGoogle Scholar
    • M. Dellnitz and A. Hohmann, Numer. Math. 75, 293 (1997). Crossref, Web of ScienceGoogle Scholar
    • M. Dellnitzet al., Chaos 7, 221 (1997). Crossref, Web of ScienceGoogle Scholar
    • M. Dellnitz, G. Froyland and O. Junge, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, ed. B. Fiedler (Springer-Verlag, Berlin, 2001) pp. 145–174, http://www.dynamicalsystems.org/sw/sw/detail?item=30. CrossrefGoogle Scholar
    • M. Dellnitz and O. Junge, Handbook of Dynamical Systems II: Towards Applications, eds. B. Fiedler, G. Iooss and N. Kopell (World Scientific, Singapore, 2002) pp. 221–264. CrossrefGoogle Scholar
    • L. Dieci and J. Lorenz, SIAM J. Num. Anal. 32, 1436 (1995). Crossref, Web of ScienceGoogle Scholar
    • L. Dieci, J. Lorenz and R. D. Russell, SIAM J. Sci. Stat. Comput. 12, 607 (1991). Crossref, Web of ScienceGoogle Scholar
    • E. J. Doedel, Congr. Numer. 30, 265 (1981). Google Scholar
    • E. J. Doedel, H. B. Keller and J. P. Kernévez, Int. J. Bifurcation and Chaos 1, 493 (1991). Link, Web of ScienceGoogle Scholar
    • E. J. Doedel, H. B. Keller and J. P. Kernévez, Int. J. Bifurcation and Chaos 1, 745 (1991). Link, Web of ScienceGoogle Scholar
    • Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B. & Wang, X. J. [1997] "AUTO97: Continuation and bifurcation software for ordinary differential equations," available via http://cmvl.cs.concordia.ca/ . Google Scholar
    • Doedel, E. J., Paffenroth, R. C., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Oldeman, B. E., Sandstede, B. & Wang, X. J. [2000] "AUTO2000: Continuation and bifurcation software for ordinary differential equations," available via http://cmvl.cs.concordia.ca/ . Google Scholar
    • K. D.   Edoh , R. D.   Russell and W.   Sun , Mathematics Research Report No. MRR 060-95 ( Australian National Univ. , 1995 ) . Google Scholar
    • T. F. Fairgrieve and A. D. Jepson, SIAM J. Numer. Anal. 28, 1446 (1991). Crossref, Web of ScienceGoogle Scholar
    • J.   Guckenheimer and P.   Holmes , Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields , 2nd edn. ( Springer-Verlag , NY , 1986 ) . Google Scholar
    • J. Guckenheimer and P. Worfolk, Bifurcations and Periodic Orbits of Vector Fields, ed. D. Schlomiuk (Kluwer Academic Publishers, 1993) pp. 241–277. CrossrefGoogle Scholar
    • J. Guckenheimer and A. Vladimirsky, SIAM J. Appl. Dyn. Syst. 3, 232 (2004), http://epubs.siam.org/sam-bin/dbq/article/60017. Crossref, Web of ScienceGoogle Scholar
    • M. E. Henderson, Int. J. Bifurcation and Chaos 12, 451 (2002). Link, Web of ScienceGoogle Scholar
    • M. E. Henderson, SIAM J. Appl. Dyn. Syst.  (2003). Google Scholar
    • D. Hobson, J. Comput. Phys. 104, 14 (1993). Crossref, Web of ScienceGoogle Scholar
    • M. E. Johnson, M. S. Jolly and I. G. Kevrekidis, Numer. Alg. 14, 125 (1997). Crossref, Web of ScienceGoogle Scholar
    • M. E. Johnson, M. S. Jolly and I. G. Kevrekidis, Int. J. Bifurcation and Chaos 11, 1 (2001). Link, Web of ScienceGoogle Scholar
    • O. Junge, Proc. Int. Conf. Diff. Eqs. 2, eds. B. Fiedler, K. Gröger and J. Sprekels (World Scientific, Singapore, 2000) pp. 916–918. Google Scholar
    • O.   Junge , Mengenorientierte Methoden zur Numerischen Analyse Dynamischer Systeme ( Shaker , Aachen , 2000 ) . Google Scholar
    • H. B. Keller, Applications of Bifurcation Theory, ed. P. H. Rabinowitz (Academic Press, 1977) pp. 359–384. Google Scholar
    • B. Krauskopf and H. M. Osinga, Int. J. Bifurcation and Chaos 8, 483 (1998). Link, Web of ScienceGoogle Scholar
    • B. Krauskopf and H. M. Osinga, J. Comp. Phys. 146, 404 (1998). Crossref, Web of ScienceGoogle Scholar
    • B. Krauskopf and H. M. Osinga, Chaos 9, 768 (1999). Crossref, Web of ScienceGoogle Scholar
    • B. Krauskopf and H. M. Osinga, SIAM J. Appl. Dyn. Syst. 4, 546 (2003). Web of ScienceGoogle Scholar
    • B. Krauskopf and H. M. Osinga, Nonlinearity 17, C1 (2004). Crossref, Web of ScienceGoogle Scholar
    • Yu. A.   Kuznetsov , Elements of Applied Bifurcation Theory , 2nd edn. ( Springer Verlag , NY , 1998 ) . Google Scholar
    • E. N. Lorenz, J. Atmosph. Sci. 20, 130 (1963). Crossref, Web of ScienceGoogle Scholar
    • K. Lust, Int. J. Bifurcation and Chaos 11, 2389 (2001). Link, Web of ScienceGoogle Scholar
    • C. W.   Misner , K. S.   Thorne and J. A.   Wheeler , Gravitation ( W. H. Freeman and Company , San Francisco , 1970 ) . Google Scholar
    • H. M. Osinga, Proc. Int. Conf. Differential Eqations, Equadiff 99 (Berlin) 2, eds. B. Fiedler, K. Gröger and J. Sprekels (World Scientific, Singapore, 2000) pp. 922–924. Google Scholar
    • H. M. Osinga and B. Krauskopf, Comput. Graph. 26, 815 (2002). Crossref, Web of ScienceGoogle Scholar
    • H. M. Osinga, Int. J. Bifurcation and Chaos 13, 553 (2003). Link, Web of ScienceGoogle Scholar
    • H. M. Osinga and B. Krauskopf, The Math. Intell. 26, 25 (2004). Crossref, Web of ScienceGoogle Scholar
    • J.   Peraire , J.   Peiro and K.   Morgan , Handbook of Grid Generation , eds. J. F.   Thompson , B. K.   Soni and N. P.   Weatherill ( CRC Press , 1999 ) . Google Scholar
    • C. Perelló, Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Mathematics 819 (Springer-Verlag, Berlin, 1979) pp. 375–378. Google Scholar
    • M. Phillips, S. Levy and T. Munzner, Not. Amer. Math. Soc. 40, 985 (1993). Google Scholar
    • S. Rebay, J. Comp. Phys. 106, 125 (1993). Crossref, Web of ScienceGoogle Scholar
    • W. C.   Rheinboldt , Numerical Analysis of Parametrized Nonlinear Equations , University of Arkansas Lecture Notes in the Mathematical Sciences ( Wiley-Interscience , 1986 ) . Google Scholar
    • R. D Russell and J. Christiansen, SIAM J. Numer. Anal. 15, 59 (1978). Crossref, Web of ScienceGoogle Scholar
    • R. J. Sacker, Comm. Pure Appl. Math. 18, 717 (1965). Crossref, Web of ScienceGoogle Scholar
    • J. A. Sethian and A. Vladimirsky, SIAM J. Numer. Anal. 41, 325 (2003). Crossref, Web of ScienceGoogle Scholar
    • R.   Seydel , From Equilibrium to Chaos. Practical Bifurcation and Stability Analysis , 2nd edn. ( Springer-Verlag , NY , 1995 ) . Google Scholar
    • M.   Spivak , Differential Geometry , 2nd edn. ( Publish or Perish, Houston , Texas , 1979 ) . Google Scholar
    • H. B. Stewart, Physica D18, 479 (1986). Google Scholar
    • S. H.   Strogatz , Nonlinear Dynamics and Chaos ( Addison-Wesley , Reading, MA , 1994 ) . Google Scholar
    • J. M. T.   Thompson and H. B.   Stewart , Nonlinear Dynamics and Chaos ( John Wiley , Chichester/NY , 1986 ) . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos