World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ON THE POSSIBILITY OF ELECTRIC CONDUCTION MEDIATED BY DISSIPATIVE SOLITONS

    https://doi.org/10.1142/S0218127405012144Cited by:52 (Source: Crossref)

    Based on the study of the dynamics of a dissipation-modified Toda anharmonic (one-dimensional, circular) lattice ring we predict here a new form of electric conduction mediated by dissipative solitons. The electron-ion-like interaction permits the trapping of the electron by soliton excitations in the lattice, thus leading to a soliton-driven current much higher than the Drude-like (linear, Ohmic) current. Besides, as we lower the values of the externally imposed field this new form of current survives, with a field-independent value.

    References

    • N. N.   Akhmediev and A.   Ankiewicz , Solitons, Nonlinear Pulses and Beams ( Chapman & Hall , London , 1997 ) . Google Scholar
    • N. W.   Ashcroft and N. D.   Mermin , Solid State Physics ( Holt, Rinehardt & Winston , Philadelphia , 1976 ) . Google Scholar
    • J.   Bernasconi and T.   Schneider (eds.) , Physics in One Dimension ( Springer , Berlin , 1981 ) . CrossrefGoogle Scholar
    • Ph.   Choquard , The Anharmonic Crystal ( Benjamin , NY , 1967 ) . Google Scholar
    • A. S.   Davydov , Solitons in Molecular Systems , 2nd edn. ( Reidel , Dordrecht , 1991 ) . CrossrefGoogle Scholar
    • E. del Ríoet al., Phys. Rev. E67, 056208-1 (2003). Google Scholar
    • J. Dunkel, W. Ebeling and U. Erdmann, Eur. Phys. J. B24, 511 (2001). Google Scholar
    • W. Ebelinget al., J. Stat. Phys. 101, 443 (2000). Crossref, ISIGoogle Scholar
    • U. Erdmannet al., Eur. Phys. J. B15, 105 (2000). CrossrefGoogle Scholar
    • Fermi, E., Pasta, J. R. & Ulam, S. M. [1965] "Studies of nonlinear problems," Los Alamos Nat.Lab.Report LA-1940 [1955]; in Collected Papers of Enrico Fermi (Univ, Chicago Press, Chicago), pp. 978–988 . Google Scholar
    • A. J. Heegeret al., Rev. Mod. Phys. 60, 781 (1988). Crossref, ISIGoogle Scholar
    • R. Hirota and K. Suzuki, Procs. IEEE 61, 1483 (1973). Crossref, ISIGoogle Scholar
    • Yu. L. Klimontovich, Physica A167, 782 (1990). Google Scholar
    • J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535 (1975). Google Scholar
    • T. D. Lee, Nature 330, 460 (1987). Crossref, ISIGoogle Scholar
    • A. Maedaet al., Physica C160, 443 (1989). Google Scholar
    • V. A. Makarovet al., Phys. Rev. E64, 036601–1 (2001). Google Scholar
    • V. I.   Nekorkin and M. G.   Velarde , Synergetic Phenomena in Active Lattices. Patterns, Waves, Solitons, Chaos ( Springer , Berlin , 2002 ) . CrossrefGoogle Scholar
    • A. A.   Nepomnyashchy , M. G.   Velarde and P.   Colinet , Interfacial Phenomena and Convection ( CRC-Chapman & Hall , London , 2002 ) . Google Scholar
    • G.   Nicolis and I.   Prigogine , Self-Organization in Non-Equilibrium Systems. From Dissipative Structures to Order through Fluctuations ( Wiley , NY , 1977 ) . Google Scholar
    • C. Normand, Y. Pomeau and M. G. Velarde, Rev. Mod. Phys. 49, 581 (1977). Crossref, ISIGoogle Scholar
    • D. N. Payton III, M. Rich and W. M. Visscher, Phys. Rev. 160, 706 (1967). Crossref, ISIGoogle Scholar
    • F. Schweitzer, W. Ebeling and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998). Crossref, ISIGoogle Scholar
    • A. C.   Scott , Nonlinear Science: Emergence & Dynamics of Coherent Structures , 2nd edn. ( Oxford University Press , Oxford , 2003 ) . CrossrefGoogle Scholar
    • A. C. Singer and A. V. Oppenheim, Int. J. Bifurcation and Chaos 9, 571 (1999). Link, ISIGoogle Scholar
    • H. Takahasi, J. Phys. Soc. Japan 16, 1685 (1961). CrossrefGoogle Scholar
    • M.   Toda , Nonlinear Waves and Solitons ( KTK Scientific Publishers , Tokyo , 1989 ) . Google Scholar
    • M. G. Velarde, Int. J. Quant. Chem. 98(), 272 (2004). Crossref, ISIGoogle Scholar
    • L.   Yu (ed.) , Solitons & Polarons in Conducting Polymers ( World Scientific , Singapore , 1988 ) . Google Scholar
    • N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 57 (1965). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos