World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

CHAOTIC BEHAVIOR OF INTERVAL MAPS AND TOTAL VARIATIONS OF ITERATES

    https://doi.org/10.1142/S0218127404010540Cited by:37 (Source: Crossref)

    Interval maps reveal precious information about the chaotic behavior of general nonlinear systems. If an interval map f:I→I is chaotic, then its iterates fn will display heightened oscillatory behavior or profiles as n→∞. This manifestation is quite intuitive and is, here in this paper, studied analytically in terms of the total variations of fn on subintervals. There are four distinctive cases of the growth of total variations of fn as n→∞:

    (i) the total variations of fn on I remain bounded;

    (ii) they grow unbounded, but not exponentially with respect to n;

    (iii) they grow with an exponential rate with respect to n;

    (iv) they grow unbounded on every subinterval of I.

    We study in detail these four cases in relations to the well-known notions such as sensitive dependence on initial data, topological entropy, homoclinic orbits, nonwandering sets, etc. This paper is divided into three parts. There are eight main theorems, which show that when the oscillatory profiles of the graphs of fn are more extreme, the more complex is the behavior of the system.

    References

    • R. L. Ader, A. G. Konheim and M. H. McAndrew, Trans. Amer. Math. Soc. 114, 309 (1965). Crossref, Web of ScienceGoogle Scholar
    • M. Artin and B. Mazur, Ann. Math. 81, 82 (1965). Crossref, Web of ScienceGoogle Scholar
    • J. Bankset al., Amer. Math. Monthly 99, 332 (1992). Crossref, Web of ScienceGoogle Scholar
    • L. Block, Proc. Amer. Math. Soc. 72, 576 (1978). Crossref, Web of ScienceGoogle Scholar
    • L. Block, Trans. Amer. Math. Soc. 254, 391 (1979). Web of ScienceGoogle Scholar
    • L.   Block and W. A.   Coppel , Dynamics in One Dimension , Lecture Notes in Mathematics   1513 ( Springer-Verlag , NY, Heidelberg, Berlin , 1992 ) . CrossrefGoogle Scholar
    • R. Bowen, Global Analysis, Proc. Symp. Pure Math., Amer. Math. Soc. 14, 23 (1970). CrossrefGoogle Scholar
    • R. Bowen, Trans. Amer. Math. Soc. 153, 401 (1971). Crossref, Web of ScienceGoogle Scholar
    • Bowen R. and J. Franks, Topology 15, 337 (1976). Web of ScienceGoogle Scholar
    • R. Brown and L. O. Chua, Int. J. Bifurcation and Chaos 6, 219 (1996). Link, Web of ScienceGoogle Scholar
    • L.   Cesari , Asymptotic Behavior and Stability Problems in Ordinary Differential Equations ( Springer-Verlag , NY, Heidelberg, Berlin , 1959 ) . Google Scholar
    • G. Chenet al., Control of Nonlinear Distributed Parameter Systems, Marcel Dekker Lectures Notes on Pure & Appl. Math., eds. G. Chenet al. (Dekker, NY, 2001) pp. 15–43. CrossrefGoogle Scholar
    • G. Chen, S. B. Hsu and T. Huang, Int. J. Bifurcation and Chaos 12, 965 (2002). Link, Web of ScienceGoogle Scholar
    • R. L.   Devaney , An Introduction to Chaotic Dynamical Systems ( Addison-Wesley , NY , 1989 ) . Google Scholar
    • G.   Edgar , Measure, Topology, and Fractal Geometry ( Springer-Verlag , NY, Berlin, Heidelberg , 1990 ) . CrossrefGoogle Scholar
    • K.   Falconer , Fractal Geometry ( Wiley , NY , 1990 ) . Google Scholar
    • P.   Hartman , Ordinary Differential Equations ( Wiley , NY , 1964 ) . Google Scholar
    • E.   Hewitt and K.   Stromberg , Real and Abstract Analysis ( Springer-Verlag , NY , 1965 ) . CrossrefGoogle Scholar
    • Huang, T. [2002] "Chaotic vibration of the wave equation studied through the unbounded growth of total variation," Ph.D. Dissertation, Department of Mathematics, Texas A&M University, College Station, Texas, U.S.A . Google Scholar
    • Y. Huang, Int. J. Bifurcation and Chaos  (2003). Google Scholar
    • A.   Katok and B.   Hasselblatt , Introduction to the Modern Theory of Dynamical Systems ( Cambridge University Press , Cambridge, U.K. , 1995 ) . CrossrefGoogle Scholar
    • Juang, J. & Hsieh, S. F. [2001] "Interval maps, total variation and chaos," preprint . Google Scholar
    • T. Li and L. Yorke, Amer. Math. Monthly 82, 985 (1975). Crossref, Web of ScienceGoogle Scholar
    • Liapunov, A. [1907] "Probléme general de la stabilite du mouvement," Ann. Fac. Sci. Univ. Toulouse 9, 203–475, reproduced [1947] Ann. Math. Study 17, Princeton . Google Scholar
    • R.   Mane , Ergodic Theory and Differential Dynamics ( Springer-Verlag , NY, Heidelberg, Berlin , 1987 ) . CrossrefGoogle Scholar
    • J. Milnor and W. Thurston, On Iterates Maps of the Interval, Lecture Notes in Mathematics 1342 (Springer-Verlag, NY, 1988) pp. 465–563. CrossrefGoogle Scholar
    • M. Misiurewicz and W. Szlenk, Studia Math 67, 45 (1980). Crossref, Web of ScienceGoogle Scholar
    • Z. Nitecki, Proc. Amer. Math. Soc. 85, 451 (1982). Crossref, Web of ScienceGoogle Scholar
    • C.   Robinson , Dynamical Systems, Stability, Symbolic Dynamics and Chaos , 2nd edn. ( CRC Press , Boca Raton, FL , 1999 ) . Google Scholar
    • Rothschild, J. [1971] "On the computation of topological entropy," thesis, CUNY, New York, U.S.A . Google Scholar
    • D.   Ruelle , Chaotic Evolution and Strange Attractors ( Cambridge University Press , Cambridge, U.K. , 1989 ) . CrossrefGoogle Scholar
    • P. Stefan, Commun. Math. Phys. 53, 237 (1977). Web of ScienceGoogle Scholar
    • P.   Walters , An Introduction to Ergodic Theory ( Springer-Verlag , NY, Heidelberg, Berlin , 1982 ) . CrossrefGoogle Scholar
    • S.   Wiggins , Introduction to Applied Nonlinear Dynamical Systems and Chaos ( Springer-Verlag , NY , 1990 ) . CrossrefGoogle Scholar
    • Z. L. Zhou, Chinese Sci. Bull. 31, 1 (1986). CrossrefGoogle Scholar
    • Z. L. Zhou, Chinese Quart. J. Math. 3, 42 (1988). Web of ScienceGoogle Scholar
    • Z. L.   Zhou , Symbolic Dynamics ( Shanghai Scientific and Technological Education Publishing House , Shanghai, China , 1997 ) . Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos