BIFURCATION AND CHAOS IN COUPLED BVP OSCILLATORS
Abstract
Bonhöffer–van der Pol(BVP) oscillator is a classic model exhibiting typical nonlinear phenomena in the planar autonomous system. This paper gives an analysis of equilibria, periodic solutions, strange attractors of two BVP oscillators coupled by a resister. When an oscillator is fixed its parameter values in nonoscillatory region and the others in oscillatory region, create the double scroll attractor due to the coupling. Bifurcation diagrams are obtained numerically from the mathematical model and chaotic parameter regions are clarified. We also confirm the existence of period-doubling cascades and chaotic attractors in the experimental laboratory.
References
- J. Appl. Math. Mech. 39, 606 (1975). Crossref, Web of Science, Google Scholar
- IEEE Trans. Circuits Syst. CAS-33, 1073 (1986). Google Scholar
- IEICE Trans. 76-A, 704 (1993). Google Scholar
- IEEE Trans. Circuits Syst. CAS-25, 7 (1978). Google Scholar
- Biophys. J. 1, 445 (1961). Crossref, Web of Science, Google Scholar
- J. Physiol. 117, 500 (1952). Crossref, Web of Science, Google Scholar
- IEICE Trans. Fund. E78-A, 1253 (1995). Google Scholar
- IEEE Trans. Circuits Syst. CAS-31, 246 (1984). Google Scholar
- IEICE Trans. Fund. E81-A, 476 (1998). Google Scholar
- IEEE Trans. Circuits Syst. CAS-21, 294 (1974). Google Scholar
- Proc. IRE 50, 2061 (1962). Crossref, Google Scholar
- IEICE Trans. Fund. E78-A, 1816 (1995). Google Scholar
- IEICE Trans. E79-A, 1581 (1996). Google Scholar
-
C. Rocsoreanu , A. Georgescu and N. Giurgiteanu , Mathematical Modeling: Theory and Applications 10 ( Kluwer Academic Publishers , Dordrecht , 2000 ) . Google Scholar - IEICE Trans. Fund. E82-A, 1729 (1999). Google Scholar
- IEICE Trans. Fund. E80-A, 1725 (1997). Google Scholar
- Int. J. Bifurcation and Chaos 10, 1917 (2000). Link, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our Bifurcation & Chaos |