Integer Codes Correcting Single Errors within Two Bytes
Abstract
This paper presents a class of integer codes suitable for use in optical networks with low error rates. The presented codes are constructed with the help of a computer and have two important features: first, they can correct single errors affecting one or two -bit bytes, and second, they use processor-friendly operations to encode/decode data bits. The effectiveness of the presented codes is demonstrated on theoretical models of four-core and six-core processors. The obtained results show that the decoder throughput reaches 14.70Gbps, which is above the operating speed of 10G networks. Finally, the paper compares the proposed codes with BCH codes of similar properties. The comparison is made in terms of redundancy and the number of decoding operations.
This paper was recommended by Regional Editor Tongquan Wei.
References
- 1. , Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer, IEEE Trans. Ind. Electron. 49 (2002) 1265–1282. Crossref, Web of Science, Google Scholar
- 2. , Performance analysis and modeling of errors and losses over 802.11b LANs for high-bit-rate real-time multimedia, Signal Process., Image Commun. 18 (2003) 575–595. Crossref, Web of Science, Google Scholar
- 3. ,
Bit error statistical analysis of optical transmission systems , WDM and Photonic Networks, eds. D. W. Faulkner and A. L. Harmer (IOS Press, 2000), pp. 43–49. Google Scholar - 4. L. James, Error behaviour in optical networks, Ph.D. thesis, Department of Engineering, University of Cambridge (2005). Google Scholar
- 5. , Error distribution in optical links, Proc. IEEE 802.3 HSSG Interim Meeting (2007). Google Scholar
- 6. , Cyclic codes from irreducible polynomials for correction of multiple errors, IEEE Trans. Inf. Theory 8 (1962) 13–20. Crossref, Web of Science, Google Scholar
- 7. , On a class of error correcting binary group codes, Inf. Control 3 (1960) 68–79. Crossref, Google Scholar
- 8. , Orthogonal Latin square codes, IBM J. Res. Dev. 14 (1970) 390–394. Crossref, Web of Science, Google Scholar
- 9. , Constructions and bounds for systematic -EC/AUED codes, IEEE Trans. Inf. Theory 36 (1990) 1381–1390. Crossref, Web of Science, Google Scholar
- 10. , New techniques for constructing -EC/AUED codes, IEEE Trans. Comput. 41 (1992) 1318–1324. Crossref, Web of Science, Google Scholar
- 11. , An improvement on constructions of -EC/AUED codes, IEEE Trans. Comput. 45 (1996) 607–608. Crossref, Web of Science, Google Scholar
- 12. , Another method for constructing -EC/AUED codes, IEEE Trans. Comput. 49 (2000) 964–966. Crossref, Web of Science, Google Scholar
- 13. , Some optimal binary and ternary -EC-AUED codes, IEEE Trans. Inf. Theory 55 (2009) 4898–4904. Crossref, Web of Science, Google Scholar
- 14. , New double-byte error-correcting codes for memory systems, IEEE Trans. Inf. Theory 44 (1998) 1152–1163. Crossref, Web of Science, Google Scholar
- 15. , A general class of -spotty byte error control codes, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90-A (2007) 1418–1427. Crossref, Web of Science, Google Scholar
- 16. , New architectural design of CA-based codec, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18 (2010) 1139–1144. Crossref, Web of Science, Google Scholar
- 17. , Efficient software-based encoding and decoding of BCH codes, IEEE Trans. Comput. 58 (2009) 878–889. Crossref, Web of Science, Google Scholar
- 18. , A flexible hybrid BCH decoder for modern NAND flash memories using GPGPUs, Micromachines 10 (2019) 365. Crossref, Web of Science, Google Scholar
- 19. , Integer codes correcting double asymmetric errors, IET Commun. 10 (2016) 1691–1696. Crossref, Web of Science, Google Scholar
- 20. , Integer codes correcting high-density byte asymmetric errors, IEEE Commun. Lett. 21 (2017) 694–697. Crossref, Web of Science, Google Scholar
- 21. , Integer codes correcting burst and random asymmetric errors within a byte, J. Franklin Inst. 355 (2018) 981–996. Crossref, Web of Science, Google Scholar
- 22. , (Perfect) integer codes correcting single errors, IEEE Commun. Lett. 22 (2018) 17–20. Crossref, Web of Science, Google Scholar
- 23. , Integer codes correcting sparse byte errors, Cryptogr. Commun. 11 (2019) 1069–1077. Crossref, Google Scholar
- 24. , Integer codes correcting burst asymmetric errors within a byte and double asymmetric errors, Cryptogr. Commun. 12 (2020) 221–230. Crossref, Google Scholar
- 25. , A note on the decoding of double-error-correcting binary BCH codes of primitive length (Corresp.), IEEE Trans. Inf. Theory 17 (1971) 765–766. Crossref, Web of Science, Google Scholar
- 26. , The automorphism group of double-error-correcting BCH codes, IEEE Trans. Inf. Theory 40 (1994) 538–542. Crossref, Web of Science, Google Scholar
- 27. , Weight distributions of cosets of two-error-correcting binary BCH codes, extended or not, IEEE Trans. Inf. Theory 40 (1994) 1425–1442. Crossref, Web of Science, Google Scholar
- 28. , New decoder for double-error-correcting binary BCH codes, IEE Proc., Commun. 143 (1996) 129–132. Crossref, Google Scholar
- 29. , Classification of error locator polynomials for double error correcting BCH codes, IEEE Trans. Commun. 46 (1998) 977–980. Crossref, Web of Science, Google Scholar
- 30. , Fast parallel decoding of double error correcting binary BCH codes, Appl. Math. Lett. 11 (1998) 11–14. Crossref, Web of Science, Google Scholar
- 31. , Algebraic Codes for Data Transmission (Cambridge University Press, 2003). Crossref, Google Scholar
- 32. , On the decoding complexity of cyclic codes up to the BCH bound, Proc. 2011 IEEE Int. Symp. Information Theory (2011), pp. 835–839. Crossref, Google Scholar
- 33. A. Fog, The microarchitecture of Intel, AMD and via CPUs: An optimization guide for assembly programmers and compiler makers, Manual, Techical University of Denmark (2020). Google Scholar