World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Floating Memristor and Inverse Memristor Emulators with Electronic Tuning

    https://doi.org/10.1142/S0218126621502248Cited by:4 (Source: Crossref)

    The work reports two different configurations to emulate the floating memristor and inverse memristor behavior. The presented circuits are based on a modified concept of active element VDTA (Voltage Differencing Transconductance Amplifier) termed as MVDTA. The reported floating memristor employs only a single MVDTA and single grounded capacitance. On the other end, the floating emulation circuit of inverse memristor emulator is based on two MVDTAs and single grounded capacitance. The behavior of the realized element for both the configurations can be tuned electronically through biasing voltage. Also, there is no employment of any commercial IC or external circuitry for multiplication of analogue voltages which is generally required to implement memristive elements. Along with the circuit implementations, mathematical properties of ideal memristor and inverse memristor considering both symmetric as well as nonsymmetric models are discussed. All the emulation circuits are verified by executing simulations using CMOS 0.18um process technique under PSPICE environment. The reported circuits are also realized using commercially available IC LM13700 and results are presented.

    This paper was recommended by Regional Editor Emre Salman.

    References

    • 1. L. O. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory 5 (1971) 507–519. Crossref, Web of ScienceGoogle Scholar
    • 2. D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature 453 (2008) 80–83. Crossref, Web of ScienceGoogle Scholar
    • 3. N. Gergel-Hackett et al., Spice behavioral modeling of TiO2 memristors for digital logic applications, J. Circuits, Syst. Comput. (2020), https://doi.org/10.1142/S0218126621200024. Web of ScienceGoogle Scholar
    • 4. L. Chua, Everything you wish to know about memristors but are afraid to ask, Radioengineering 24 (2015). Crossref, Web of ScienceGoogle Scholar
    • 5. Z. Biolek and D. Biolek, How can the hysteresis loop of the ideal memristor be pinched? IEEE Trans. Circuits Syst. — II: Express Briefs 61 (2014). Web of ScienceGoogle Scholar
    • 6. Z. Biolek, D. Biolek and V. Biolkova, Computation of the area of memristor pinched hysteresis loop, IEEE Trans. Circuits Syst. —II: Express Briefs 59 (2012). Web of ScienceGoogle Scholar
    • 7. Z. Biolek, D. Biolek and V. Biolkova, Analytical computation of the area of pinched hysteresis loops of ideal mem-elements, Radioengineering 22 (2013). Web of ScienceGoogle Scholar
    • 8. D. Biolek, Z. Biolek and V. Biolkova, Interpreting area of pinched memristor hysteresis loop, Electron. Lett. 50 (2014). Crossref, Web of ScienceGoogle Scholar
    • 9. D. Yu, Iu. Hhc, A. L. Fitch and Y. Liang, A floating memristor emulator based relaxation oscillator, IEEE Trans. Circuits Syst. I 61 (2014). CrossrefGoogle Scholar
    • 10. C. Sanchez-Lopez, J. Mendoza-Lopez, M. A. Carrasco-Aguilar and C. Muniz-Montero, A floating analog memristor emulator circuit, IEEE Trans. Circuits. Syst. II Express Briefs 61 (2014). Web of ScienceGoogle Scholar
    • 11. A. Yesil, Y. Babacan and F. Kacar, A new floating memristor based on CBTA with grounded capacitors, J. Circuits, Syst. Comput. (2019). Link, Web of ScienceGoogle Scholar
    • 12. R. K. Ranjan, N. Rani, R. Pal, S. K. Paul and G. Kanyal, Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application, Microelectron. J. 60 (2017). Crossref, Web of ScienceGoogle Scholar
    • 13. S. Gupta and S. K. Rai, New grounded and floating decremental/incremental memristor emulators based on CDTA and its application, Wireless PersCommun 113 (2020). Google Scholar
    • 14. J. Vista and A. Ranjan, Flux controlled floating memristor employing VDTA: incremental or decremental operation, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (2018). Google Scholar
    • 15. H. Sozen and U. Cam, Electronically tunable memristor emulator circuit, Analog Integr. Circuits Signal Process. 89 (2016). Crossref, Web of ScienceGoogle Scholar
    • 16. P. B. Petrovic, Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA, Analog Integr. Circuits Signal Process. 96 (2018). Crossref, Web of ScienceGoogle Scholar
    • 17. N. Yadav, S. K. Rai and R. Pandey, New grounded and floating memristor emulators using OTA and CDBA, Int. J. Circuit Theory Appl. (2020). Crossref, Web of ScienceGoogle Scholar
    • 18. A. Yesil, Y. Babacan and F. Kacar, An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC, Int. J. Electron. Commun. (2020). CrossrefGoogle Scholar
    • 19. N. Yadav, S. K. Rai and R. Pandey, Novel memristor emulators using fully balanced VDBA and grounded capacitor, Iran. J. Sci. Technol., Trans. Electr. Eng. (2020). Web of ScienceGoogle Scholar
    • 20. P. B. Petrović, Tunable flux-controlled floating memristor emulator circuits, IET Circuits, Devices Syst. (2019). Crossref, Web of ScienceGoogle Scholar
    • 21. Z. Li, Y. Zeng and M. Ma, A novel floating memristor emulator with minimal components, Active Passive Electron. Compon. (2017). Crossref, Web of ScienceGoogle Scholar
    • 22. Yu. Dongsheng, X. Zhao, I. H. Tingting and T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor, IEEE Trans. Circuits Syst. II: Express Briefs (2019). Web of ScienceGoogle Scholar
    • 23. R. Ranjan, S. Surendra, S. Raushan, N. Garg, B. Kumari and F. Khateb, High‐frequency floating memristor emulator and its experimental results, IET Circuits, Devices Syst. (2018). Web of ScienceGoogle Scholar
    • 24. K. Xu, Y. Zhang, L. Wang, W. T. Joines and Q. H. Liu, IEEE 56th Int. Midwest Symp. Circuits and Systems (MWSCAS), Columbus, OH (2013), pp. 53–56. CrossrefGoogle Scholar
    • 25. A. G. Alharbi, M. E. Fouda, Z. J. Khalifa and M. H. Chowdhury, IEEE 59th Int. Midwest Symp. Circuits and Systems (MWSCAS), Abu Dhabi, UAE, 16–19 October 2016. Google Scholar
    • 26. B. Metin, N. Herencsar and O. Cicekoglu, 2018 IEEE 61st Int. Midwest Symp. Circuits and Systems (MWSCAS), Windsor, ON, Canada (2018), pp. 254–257. CrossrefGoogle Scholar
    • 27. Z. G. Cam and H. Sedef, A new floating memristance simulator circuit based on second generation current conveyor, J. Circuits, Syst. Comput. 26 (2017) 1750029. Link, Web of ScienceGoogle Scholar
    • 28. A. Yesil and Y. Babacan, Design of memristor with hard-switching behavior employing only one CCCII and one capacitor, J. Circuits, Syst. Comput. (2020), https://doi.org/10.1142/S0218126621501516. Web of ScienceGoogle Scholar
    • 29. D. Biolek, R. Senani, V. Biolkova and Z. Kolka, Active elements for analog signal processing; Classification, review and new proposals, Radioengineering 174 (2008) 15–13. Google Scholar
    • 30. D. Biolek, Z. Biolek, V. Biolkova, A. Ascoli and R. Tetzlaff, About v-i Pinched Hysteresis of Some Non-Memristive Systems (2018). Google Scholar
    • 31. M. Srivastava and D. Prasad, VDTA based electronically tunable purely active simulator circuit for realizing floating resistance, J. Eng. Sci. Technol. Rev. 8 (2015) 112–116. CrossrefGoogle Scholar
    • 32. M. Srivastava, D. Prasad and D. R. Bhaskar, Voltage mode quadrature oscillator employing single VDTA and grounded passive elements, Contemp. Eng. Sci. 27 (2014) 1501–1507. CrossrefGoogle Scholar
    • 33. M. Srivastava, Novel electronically controllable grounded series/parallel lossy inductor simulator configurations, J. Eng. Res. 6 (2018) 118–135. Web of ScienceGoogle Scholar
    • 34. D. Prasad, D. R. Bhaskar and M. Srivastava, Universal current-mode biquad filter using a VDTA, Circuits Syst. (USA) 4 (2013) 29–33. CrossrefGoogle Scholar
    • 35. C. Sanchez-Lopez et al., A transformation methodology of normal nonlinear resistors/conductors to inverses, J. Circuits, Syst. Comput. (2018), https://doi.org/10.1142/S0218126619300113. Web of ScienceGoogle Scholar