SPICE Behavioral Modeling of TiO2 Memristors for Digital Logic Applications
Abstract
This work presents a behavior-based memristor model for the simulation of novel digital logic architectures. This model exhibits the nonvolatile hard switching current–voltage curves of the experimentally realized memristors. Because the model is implemented via the widely available traditional SPICE (Simulation Program with Integrated Circuit Emphasis) circuit components, its accuracy is not dependent on still-emerging device transport theory and auxiliary variables. The memristor model is used in material implication (IMPLY) gates to perform both combinational and sequential logics. As IMPLY gates exhibit the complete functionality required for digital logic, this work presents a simple realistic memristor model for use in the simulation of novel digital logic architectures.
This paper was recommended by Regional Editor Emre Salman.
References
- 1. , Memristor — the missing circuit element, IEEE Trans. Circuit Theory CT-18 (1971) 507–519. Web of Science, Google Scholar
- 2. , Resistance switching memories are memories, Appl. Phys. A 102 (2011) 756–783. Web of Science, Google Scholar
- 3. , Switching phenomena in titanium oxide thin films, Solid-State Electron. 11 (1968) 535–541. Web of Science, Google Scholar
- 4. , Memory switching in thermally grown titanium oxide films, J. Phys. D, Appl. Phys. 18 (1985) 911–917. Web of Science, Google Scholar
- 5. , Reproducible switching effect in thin oxide films for memory applications, Appl. Phys. Lett. 77 (2000) 139–141. Web of Science, Google Scholar
- 6. , Resistance switching characteristics for nonvolatile memory operation of binary metal oxides, Jpn. J. Appl. Phys. 46 (2007) 2172–2174. Web of Science, Google Scholar
- 7. , Write current reduction in transition metal oxide based resistance-change memory, Adv. Mater. 20 (2008) 924–928. Web of Science, Google Scholar
- 8. , High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application, Appl. Phys. Lett. 91 (2007) 223510:1–223510:3. Web of Science, Google Scholar
- 9. , Resistive switching of aluminum oxide for flexible memory, Appl. Phys. Lett. 92 (2008) 223508:1–223508:3. Web of Science, Google Scholar
- 10. , The missing memristor found, Nature 453 (2008) 80–83. Web of Science, Google Scholar
- 11. S. Adee, The mysterious memristor (2008), IEEE Spectrum News, http://spectrum.ieee.org/semiconductors/design/the-mysterious-memristor. Google Scholar
- 12. J. Markov, H.P. reports big advance in memory chip design (2008), The New York Times, May 1, http://www.nytimes.com/2008/05/01/technology/01hp-Web.html. Google Scholar
- 13. , Memristor-CMOS hybrid integrated circuits for reconfigurable logic, Nano Lett. 9 (2009) 3640–3645. Web of Science, Google Scholar
- 14. , A flexible solution-processed memristor, IEEE Electron Device Lett. 30 (2009) 706–708. Web of Science, Google Scholar
- 15. , High switching endurance in TaOx memristive device, Appl. Phys. Lett. 97 (2010) 232102:1–232102:3. Web of Science, Google Scholar
- 16. , Memristors with flexible electronic applications, Proc. IEEE 100 (2012) 1971–1978. Web of Science, Google Scholar
- 17. , Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3 (2008) 429–433. Web of Science, Google Scholar
- 18. , Flexible memristors fabricated through sol-gel hydrolysis, ECS Trans. 35 (2011) 111–120. Google Scholar
- 19. , Memristive switches enable ‘stateful’ logic operations via material implication, Nature 464 (2010) 873–876. Web of Science, Google Scholar
- 20. , Nanoscale memristor device as synapse in neuromorphic system, Nano Lett. 10 (2009) 1297–1301. Web of Science, Google Scholar
- 21. , Meet MoNETA — The brain-inspired chip that will outsmart us all: The brain of a new machine, IEEE Spectrum 47 (2010) 30–37. Web of Science, Google Scholar
- 22. , Experimental demonstration of associative memory with memristive neural networks, Neural Netw. 23 (2010) 881–886. Web of Science, Google Scholar
- 23. , Memristor-based material implication (IMPLY) logic: Design principles and methodologies, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 (2014) 2054–2066. Web of Science, Google Scholar
- 24. , Single-readout high density memristor crossbar, Sci. Rep. 6 (2016) 18863. Web of Science, Google Scholar
- 25. , Crossbar array of selector-less TaOx/TiO2 bilayer RRAM, Microelectron. Reliab. 55 (2015) 2220–2223. Web of Science, Google Scholar
- 26. , Memristor and selector devices fabricated from Nx, Appl. Phys. Lett. 108 (2016) 143504. Web of Science, Google Scholar
- 27. , Improving tolerance to variations in memristor-based applications using parallel memristors, IEEE Trans. Comput. 64 (2015) 733–746. Web of Science, Google Scholar
- 28. , Leveraging memristive systems in the construction of digital logic circuits, Proc. IEEE 100 (2012) 2033–2049. Web of Science, Google Scholar
- 29. , Chua’s circuit: An overview ten years later, J. Circuits Syst. Comput. 4 (1994) 117–159. Link, Web of Science, Google Scholar
- 30. , Building memristor applications: From device model to circuit design, IEEE Trans. Nanotechnol. 13 (2014) 1154–1162. Web of Science, Google Scholar
- 31. , SPICE model of a memristor with nonlinear dopant drift, Radioengineering 18 (2009) 210–214. Web of Science, Google Scholar
- 32. , A memristor device model, IEEE Electron Device Lett. 32 (2011) 1436–1438. Web of Science, Google Scholar
- 33. , A versatile memristor model with nonlinear dopant kinetics, IEEE Trans. Electron Devices 58 (2011) 3099–3105. Web of Science, Google Scholar
- 34. , Memristor device fundamentals and modeling: applications to circuits and systems simulations, Proc. IEEE 100 (2012) 1991–2007. Web of Science, Google Scholar
- 35. S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, TEAM: Threshold adaptive memristor model, IEEE Trans. Circuits Syst. I, Regul. Pap. 60 (2010) 211–221. Google Scholar
- 36. , General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells, J. Circuits Syst. Comput. 19 (2010) 407–424. Link, Web of Science, Google Scholar
- 37. , Comparative analysis of memristor models and memories design, J. Semicond. 39 (2018) 074006. Web of Science, Google Scholar
- 38. , Stochastic and novel generic scalable window function-based deterministic memristor SPICE model comparison and implementation for synaptic circuit design, SN Appl. Sci. 2 (2020) 128. Web of Science, Google Scholar
- 39. , An accurate analytical memristor model for SPICE simulators, IEICE Electron. Express 15 (2018) 20180724:1–20180724:6. Web of Science, Google Scholar
- 40. , SPICE model of memristor and its application, Proc. 2013 IEEE 56th Midwest Symp. Circuits and Systems (MWSCAS) (2013), pp. 53–56. Google Scholar
- 41. , On SPICE macromodeling of TiO2 memristors, Electron. Lett. 45 (2009) 377–379. Web of Science, Google Scholar
- 42. , SPICE modeling of memristors, Proc. 2011 IEEE Int. Symp. Circuits and Systems (ISCAS) (2011), pp. 1832–1835. Google Scholar
- 43. , Macromodeling of the memristor in SPICE, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29 (2010) 632–636. Web of Science, Google Scholar
- 44. , A memristor SPICE implementation and a new approach for magnetic for magnetic flux controlled memristor modeling, IEEE Trans. Nanotechnol. 10 (2011) 250–255. Web of Science, Google Scholar
- 45. , A new DDCC based memristor emulator circuit and its applications, Microelectron. J. 45 (2014) 282–287. Web of Science, Google Scholar
- 46. , A floating analog memristor emulator circuit, IEEE Trans. Circuits Syst. II, Express Briefs 61 (2014) 309–313. Web of Science, Google Scholar
- 47. D. Yu, H. H. C. Lu, A. L. Fitch and Y. Liang, A floating memristor emulator-based relaxation oscillator, IEEE Trans. Circuits Syst. I, Regul. Pap. 61 (2014) 2888–2896. Google Scholar
- 48. , Memristor emulator based on single CCII, Proc. 27th Int. Conf. Microelectronics (ICM) (2015). Google Scholar
- 49. , A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit, Chaos 29 (2019) 013141. Web of Science, Google Scholar
- 50. , Bi-stability in an improved memristor-based third-order Wien-bridge oscillator, IETE Tech. Rev. 36 (2019) 109–116. Web of Science, Google Scholar
- 51. , Simple generic memristor emulator for voltage-controlled models, Proc. 2016 IEEE 59th Int. Midwest Symp. Circuits and Systems (MWSCAS) (2016), pp. 1–4. Google Scholar
- 52. , Memristor emulator applications using the MOS-only technique, Proc. 2018 IEEE 61st Int. Midwest Symp. Circuits and Systems (MWSCAS) (2018), pp. 254–257. Google Scholar
- 53. , Realization of an analog model of memristor based on light dependent resistor, Proc. 2012 IEEE Int. Symp. Circuits and Systems (2012), pp. 1139–1142. Google Scholar
- 54. Y. V. Pershin and M. Di Ventra, Teaching memory circuit elements via experiment-based learning, IEEE Circuits Syst. Mag. 12 (2012) 64–74. Google Scholar
- 55. , Memristor emulator with off-the-shelf solid state components for memristor application circuits, Proc. 13th Int. Workshop Cellular Nanoscale Networks and their Applications (2012). Google Scholar
- 56. S. Shin, L. Zheng, G. Weickhardt, S. Cho and S. Kang, Compact circuit model and hardware emulation for floating memristor devices, IEEE Circuits Syst. Mag. 13 (2013) 42–45. Google Scholar
- 57. H. Kim, M. Pd. Sah, C. Yang, S. Cho and L. O. Chua, Memristor emulator for memristor circuit applications, IEEE Trans. Circuits Systems I, Regul. Pap. 59 (2012) 2422–2431. Google Scholar