World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SPICE Behavioral Modeling of TiO2 Memristors for Digital Logic Applications

    https://doi.org/10.1142/S0218126621200024Cited by:2 (Source: Crossref)

    This work presents a behavior-based memristor model for the simulation of novel digital logic architectures. This model exhibits the nonvolatile hard switching current–voltage curves of the experimentally realized memristors. Because the model is implemented via the widely available traditional SPICE (Simulation Program with Integrated Circuit Emphasis) circuit components, its accuracy is not dependent on still-emerging device transport theory and auxiliary variables. The memristor model is used in material implication (IMPLY) gates to perform both combinational and sequential logics. As IMPLY gates exhibit the complete functionality required for digital logic, this work presents a simple realistic memristor model for use in the simulation of novel digital logic architectures.

    This paper was recommended by Regional Editor Emre Salman.

    References

    • 1. L. O. Chua, Memristor — the missing circuit element, IEEE Trans. Circuit Theory CT-18 (1971) 507–519. Web of ScienceGoogle Scholar
    • 2. L. O. Chua, Resistance switching memories are memories, Appl. Phys. A 102 (2011) 756–783. Web of ScienceGoogle Scholar
    • 3. F. Argall, Switching phenomena in titanium oxide thin films, Solid-State Electron. 11 (1968) 535–541. Web of ScienceGoogle Scholar
    • 4. A. A. Ansari and A. Qadeer, Memory switching in thermally grown titanium oxide films, J. Phys. D, Appl. Phys. 18 (1985) 911–917. Web of ScienceGoogle Scholar
    • 5. A. Beck, J. G. Bednortz, C. Gerber, C. Rossel and D. Widmer, Reproducible switching effect in thin oxide films for memory applications, Appl. Phys. Lett. 77 (2000) 139–141. Web of ScienceGoogle Scholar
    • 6. I.-S. Park, K. Kim, S. Lee and J. Ahn, Resistance switching characteristics for nonvolatile memory operation of binary metal oxides, Jpn. J. Appl. Phys. 46 (2007) 2172–2174. Web of ScienceGoogle Scholar
    • 7. S. Ahn, M. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D. Suh, D. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I. Yoo, J. Lee, J. Park, I. Baek and B. H. Park, Write current reduction in transition metal oxide based resistance-change memory, Adv. Mater. 20 (2008) 924–928. Web of ScienceGoogle Scholar
    • 8. C. Yoshida, K. Tsunoda, H. Noshiro and Y. Sugiyama, High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application, Appl. Phys. Lett. 91 (2007) 223510:1–223510:3. Web of ScienceGoogle Scholar
    • 9. S. Kim and Y. Choi, Resistive switching of aluminum oxide for flexible memory, Appl. Phys. Lett. 92 (2008) 223508:1–223508:3. Web of ScienceGoogle Scholar
    • 10. D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature 453 (2008) 80–83. Web of ScienceGoogle Scholar
    • 11. S. Adee, The mysterious memristor (2008), IEEE Spectrum News, http://spectrum.ieee.org/semiconductors/design/the-mysterious-memristor. Google Scholar
    • 12. J. Markov, H.P. reports big advance in memory chip design (2008), The New York Times, May 1, http://www.nytimes.com/2008/05/01/technology/01hp-Web.html. Google Scholar
    • 13. Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro and R. S. Williams, Memristor-CMOS hybrid integrated circuits for reconfigurable logic, Nano Lett. 9 (2009) 3640–3645. Web of ScienceGoogle Scholar
    • 14. N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. A. Richter, C. A. Hacker and D. Gundlach, A flexible solution-processed memristor, IEEE Electron Device Lett. 30 (2009) 706–708. Web of ScienceGoogle Scholar
    • 15. J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Mideiros-Ribeiro and R. S. Williams, High switching endurance in TaOx memristive device, Appl. Phys. Lett. 97 (2010) 232102:1–232102:3. Web of ScienceGoogle Scholar
    • 16. N. Gergel-Hackett, J. L. Tedesco and C. A. Richter, Memristors with flexible electronic applications, Proc. IEEE 100 (2012) 1971–1978. Web of ScienceGoogle Scholar
    • 17. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol. 3 (2008) 429–433. Web of ScienceGoogle Scholar
    • 18. J. L. Tedesco, N. Gergel-Hackett, L. Stephey, A. Herzing, M. Hernández-Mora, J. Kopanski, C. Hacker and C. Richter, Flexible memristors fabricated through sol-gel hydrolysis, ECS Trans. 35 (2011) 111–120. Google Scholar
    • 19. J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart and R. S. Williams, Memristive switches enable ‘stateful’ logic operations via material implication, Nature 464 (2010) 873–876. Web of ScienceGoogle Scholar
    • 20. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and N. Lu, Nanoscale memristor device as synapse in neuromorphic system, Nano Lett. 10 (2009) 1297–1301. Web of ScienceGoogle Scholar
    • 21. M. Versace and B. Chandler, Meet MoNETA — The brain-inspired chip that will outsmart us all: The brain of a new machine, IEEE Spectrum 47 (2010) 30–37. Web of ScienceGoogle Scholar
    • 22. V. Y. Pershin and M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, Neural Netw. 23 (2010) 881–886. Web of ScienceGoogle Scholar
    • 23. S. Kvantinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny and U. C. Weiser, Memristor-based material implication (IMPLY) logic: Design principles and methodologies, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 (2014) 2054–2066. Web of ScienceGoogle Scholar
    • 24. M. A. Zidan, H. Omran, R. Naous, A. Sultan, H. A. H. Fahmy, W. D. Lu and K. N. Salama, Single-readout high density memristor crossbar, Sci. Rep. 6 (2016) 18863. Web of ScienceGoogle Scholar
    • 25. C.-T. Chou, B. Hudec, C.-W. Hsu, W.-L. Lai, C.-C. Chang and T.-H. Hou, Crossbar array of selector-less TaOx/TiO2 bilayer RRAM, Microelectron. Reliab. 55 (2015) 2220–2223. Web of ScienceGoogle Scholar
    • 26. B. J. Murdoch, D. G. McCulloch, R. Ganesan, D. R. McKenzie and J. G. Partridge, Memristor and selector devices fabricated from HfO2xNx, Appl. Phys. Lett. 108 (2016) 143504. Web of ScienceGoogle Scholar
    • 27. J. Rajendran, R. Karri and G. S. Rose, Improving tolerance to variations in memristor-based applications using parallel memristors, IEEE Trans. Comput. 64 (2015) 733–746. Web of ScienceGoogle Scholar
    • 28. G. S. Rose, J. Rajendran, H. Manem, R. Karri and R. E. Pino, Leveraging memristive systems in the construction of digital logic circuits, Proc. IEEE 100 (2012) 2033–2049. Web of ScienceGoogle Scholar
    • 29. L. O. Chua, Chua’s circuit: An overview ten years later, J. Circuits Syst. Comput. 4 (1994) 117–159. Link, Web of ScienceGoogle Scholar
    • 30. F. Garcia, M. Lopez-Vallejo and P. Ituero, Building memristor applications: From device model to circuit design, IEEE Trans. Nanotechnol. 13 (2014) 1154–1162. Web of ScienceGoogle Scholar
    • 31. Z. Biolek, D. Biolek and V. Biolkova, SPICE model of a memristor with nonlinear dopant drift, Radioengineering 18 (2009) 210–214. Web of ScienceGoogle Scholar
    • 32. C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino and S. Rogers, A memristor device model, IEEE Electron Device Lett. 32 (2011) 1436–1438. Web of ScienceGoogle Scholar
    • 33. T. Prodromakis and B. P. Peh, A versatile memristor model with nonlinear dopant kinetics, IEEE Trans. Electron Devices 58 (2011) 3099–3105. Web of ScienceGoogle Scholar
    • 34. K. Eshraghian, O. Kavehei, K.-R. Cho, J. M. Chappell, A. Iqbal, D. F. Al-Sarawi and D. Abbott, Memristor device fundamentals and modeling: applications to circuits and systems simulations, Proc. IEEE 100 (2012) 1991–2007. Web of ScienceGoogle Scholar
    • 35. S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, TEAM: Threshold adaptive memristor model, IEEE Trans. Circuits Syst. I, Regul. Pap. 60 (2010) 211–221. Google Scholar
    • 36. M. J. Sharifi and Y. M. Banadaki, General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells, J. Circuits Syst. Comput. 19 (2010) 407–424. Link, Web of ScienceGoogle Scholar
    • 37. J. Singh and B. Raj, Comparative analysis of memristor models and memories design, J. Semicond. 39 (2018) 074006. Web of ScienceGoogle Scholar
    • 38. M. Nigus, R. Priyadarshini and R. M. Mehra, Stochastic and novel generic scalable window function-based deterministic memristor SPICE model comparison and implementation for synaptic circuit design, SN Appl. Sci. 2 (2020) 128. Web of ScienceGoogle Scholar
    • 39. S. Thomas and S. Prakash, An accurate analytical memristor model for SPICE simulators, IEICE Electron. Express 15 (2018) 20180724:1–20180724:6. Web of ScienceGoogle Scholar
    • 40. K. Xu, Y. Zhang, L. Wang, W. T. Joines and Q. H. Liu, SPICE model of memristor and its application, Proc. 2013 IEEE 56th Midwest Symp. Circuits and Systems (MWSCAS) (2013), pp. 53–56. Google Scholar
    • 41. S. Benderli and T. A. Wey, On SPICE macromodeling of TiO2 memristors, Electron. Lett. 45 (2009) 377–379. Web of ScienceGoogle Scholar
    • 42. H. Abdalla and M. D. Pickett, SPICE modeling of memristors, Proc. 2011 IEEE Int. Symp. Circuits and Systems (ISCAS) (2011), pp. 1832–1835. Google Scholar
    • 43. A. Rak and G. Cserey, Macromodeling of the memristor in SPICE, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29 (2010) 632–636. Web of ScienceGoogle Scholar
    • 44. D. Batas and H. Fiedler, A memristor SPICE implementation and a new approach for magnetic for magnetic flux controlled memristor modeling, IEEE Trans. Nanotechnol. 10 (2011) 250–255. Web of ScienceGoogle Scholar
    • 45. A. Yesil, Y. Babacan and F. Kacar, A new DDCC based memristor emulator circuit and its applications, Microelectron. J. 45 (2014) 282–287. Web of ScienceGoogle Scholar
    • 46. C. Sanchez-Lopez, J. Mendoza-Lopez, M. A. Carrasco-Aguilar and C. Muniz-Montero, A floating analog memristor emulator circuit, IEEE Trans. Circuits Syst. II, Express Briefs 61 (2014) 309–313. Web of ScienceGoogle Scholar
    • 47. D. Yu, H. H. C. Lu, A. L. Fitch and Y. Liang, A floating memristor emulator-based relaxation oscillator, IEEE Trans. Circuits Syst. I, Regul. Pap. 61 (2014) 2888–2896. Google Scholar
    • 48. A. G. Alharbi, Z. J. Khalifa, M. E. Fouda and M. H. Chowdhury, Memristor emulator based on single CCII, Proc. 27th Int. Conf. Microelectronics (ICM) (2015). Google Scholar
    • 49. Q. Zhao, C. Wang and X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit, Chaos 29 (2019) 013141. Web of ScienceGoogle Scholar
    • 50. H. Bao, N. Wang, H. Wu, Z. Song and B. Bao, Bi-stability in an improved memristor-based third-order Wien-bridge oscillator, IETE Tech. Rev. 36 (2019) 109–116. Web of ScienceGoogle Scholar
    • 51. A. G. Alharbi, M. E. Fouda, Z. J. Khalifa and M. H. Chowdhury, Simple generic memristor emulator for voltage-controlled models, Proc. 2016 IEEE 59th Int. Midwest Symp. Circuits and Systems (MWSCAS) (2016), pp. 1–4. Google Scholar
    • 52. B. Metin, N. Herencsar and O. Cicekoglu, Memristor emulator applications using the MOS-only technique, Proc. 2018 IEEE 61st Int. Midwest Symp. Circuits and Systems (MWSCAS) (2018), pp. 254–257. Google Scholar
    • 53. A. L. Fitch, H. H. C. Lu, X. Y. Wang, V. Sreeram and W. G. Qi, Realization of an analog model of memristor based on light dependent resistor, Proc. 2012 IEEE Int. Symp. Circuits and Systems (2012), pp. 1139–1142. Google Scholar
    • 54. Y. V. Pershin and M. Di Ventra, Teaching memory circuit elements via experiment-based learning, IEEE Circuits Syst. Mag. 12 (2012) 64–74. Google Scholar
    • 55. C. Yang, M. Pd. Sah, K. S. Jung, S. Cho and H. Kim, Memristor emulator with off-the-shelf solid state components for memristor application circuits, Proc. 13th Int. Workshop Cellular Nanoscale Networks and their Applications (2012). Google Scholar
    • 56. S. Shin, L. Zheng, G. Weickhardt, S. Cho and S. Kang, Compact circuit model and hardware emulation for floating memristor devices, IEEE Circuits Syst. Mag. 13 (2013) 42–45. Google Scholar
    • 57. H. Kim, M. Pd. Sah, C. Yang, S. Cho and L. O. Chua, Memristor emulator for memristor circuit applications, IEEE Trans. Circuits Systems I, Regul. Pap. 59 (2012) 2422–2431. Google Scholar