World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Resistorless Current-Mode First-Order All-Pass Filter with Electronic Tuning Employing Low-Voltage CBTA and Grounded Capacitor by:10 (Source: Crossref)

    In this paper, a new realization of a current-mode first-order all-pass filter (APF) using a single active building block (ABB) and one grounded capacitor is presented. As the ABB, the current backward transconductance amplifier (CBTA) is used, which is one of the most recently reported active elements in the literature. The theoretical results are in detail verified by numerous SPICE simulations using a new low-voltage implementation of CBTA. In the design, the PTM 90nm level-7 CMOS process BSIM3v3 parameters with ±0.45V supply voltages were used. The proposed resistorless CBTA-C APF provides easy electronic tuning of the pole frequency in the frequency range from 763kHz to 17.6MHz, which is more than one decade. Maximum power dissipation of the circuit is 828μW at bias current 233μA. Nonideal, parasitic effects, sensitivity analyses, temperature and noise variation, current swing capability, and Monte Carlo analysis results are also provided. Compared to prior state-of-the-art works, the proposed CBTA-C APF has achieved the highest figure of Merit value, which proves its superior performance.

    This paper was recommended by Regional Editor Piero Malcovati.


    • 1. J. E. B. Ponsonby, Active all-pass filter using a differential operational amplifier, Electron. Lett. 2 (1966) 134–135, doi:10.1049/el:19660107. CrossrefGoogle Scholar
    • 2. W. Tangsrirat, On the realization of first-order current-mode AP/HP filter, Radioengineering 22 (2013) 1007–1015. ISIGoogle Scholar
    • 3. L. Safari, S. Minaei and E. Yuce, CMOS first-order current-mode all-pass filter with electronic tuning capability and its applications, J. Circuits, Syst. Comput. 22 (2013) 17 pages, doi:10.1142/S0218126613500072. Link, ISIGoogle Scholar
    • 4. N. Herencsar, J. Jerabek, J. Koton, K. Vrba, S. Minaei and I. C. Goknar, Pole frequency and pass-band gain tunable novel fully-differential current-mode all-pass filter, Proc. 2015 IEEE Int. Symp. Circuits and Systems (ISCAS), Lisbon, Portugal, 2015, pp. 2668–2671, doi:10.1109/ISCAS.2015.7169235. Google Scholar
    • 5. E. Yuce, S. Minaei, N. Herencsar and J. Koton, Realization of first-order current-mode filters with low number of MOS transistors, J. Circuits, Syst. Comput. 22 (2013) 1–14, doi:10.1142/S0218126612500715. Link, ISIGoogle Scholar
    • 6. M. Higashimura and Y. Fukui, Realization of current-mode all-pass networks using a current conveyor, IEEE Trans. Circuits Syst. 37 (1990) 660–661, doi:10.1109/31.55015. CrossrefGoogle Scholar
    • 7. J. W. Horng, C. L. Hou, C. M. Chang, W. Y. Chung, H. L. Liu and C. T. Lin, High-output impedance current-mode first-order allpass networks with four grounded components and two CCIIs, Int. J. Electron. 93 (2006) 613–621, doi:10.1080/00207210600711580. Crossref, ISIGoogle Scholar
    • 8. M. Un and F. Kacar, New second generation current conveyor-based current-mode first order all-pass filter and quadrature oscillator, J. Istanb. Commer. Univ. 6 (2007) 119–127. Google Scholar
    • 9. E. Yuce and S. Minaei, A first-order fully cascadable current-mode universal filter composed of dual output CCIIs and a grounded capacitor, J. Circuits, Syst. Comput. 25 (2016) 15, doi:10.1142/S0218126616500420. Link, ISIGoogle Scholar
    • 10. S. Minaei and E. Yuce, All grounded passive elements current-mode all-pass filter, J. Circuits, Syst. Comput. 18 (2009) 31–43, doi:10.1142/S0218126609004909. Link, ISIGoogle Scholar
    • 11. J. Horng, C. Hou, Y. Guo, C. Hsu, D. Yang and M. Ho, Low input and high output impedances current-mode first-order allpass filter employing grounded passive components, Circuits Syst. 3 (2012) 176–179, doi:10.4236/cs.2012.32023. CrossrefGoogle Scholar
    • 12. I. A. Khan, P. Beg and M. T. Ahmed, First order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIs, Arab. J. Sci. Eng. 32 (2007) 119–126. ISIGoogle Scholar
    • 13. M. Kumngern, P. Sampattavanich, P. Prommee and K. Dejhan, A capacitor-grounded current-tunable current mode all-pass network, Proc. IEEE Region 10 Int. Conf. TENCON 2004, Chiang Mai, Thailand, 2004, pp. 384–386, doi:10.1109/TENCON.2004.1414950. Google Scholar
    • 14. S. Maheshwari, New voltage and current-mode APS using current controlled conveyor, Int. J. Electron. 91 (2004) 735–743, doi:10.1080/00207210412331332880. Crossref, ISIGoogle Scholar
    • 15. S. Tongkulboriboon, P. Pawarangkoon, W. Petchakit and W. Kiranon, Electronically current mode all-pass filter with only one grounded capacitor, Proc. IEEE Region 10 Int. Conf. TENCON 2005, Melbourne, Australia, 2005, pp. 1–6, doi:10.1109/TENCON.2005.300918. Google Scholar
    • 16. S. Maheshwari, A new current-mode current-controlled all-pass section, J. Circuits Syst. Comput. 16 (2007) 181–189, doi:10.1142/S0218126607003599. Link, ISIGoogle Scholar
    • 17. S. Oztayfun, S. Kilinc, A. Celebi and U. Cam, A new electronically tunable phase shifter employing current-controlled current conveyors, AEU — Int. J. Electron. Commun. 62 (2008) 228–231, doi:10.1016/j.aeue.2007.03.012. Crossref, ISIGoogle Scholar
    • 18. S. Songkla and W. Jaikla, Realization of electronically tunable current-mode first-order allpass filter and its application, Int. J. Electron. Electri. Eng. 6 (2012) 40–43. Google Scholar
    • 19. W. Tangsrirat, Cascadable current-mode first-order allpass filter using current controlled conveyors, Przeglad Elektrotechniczny 89 (2013) 187–190. Google Scholar
    • 20. P. B. Petrovic, A new tunable current-mode peak detector, Microelectron. J. 45 (2014) 805–814, doi:10.1016/j.mejo.2014.02.019. Crossref, ISIGoogle Scholar
    • 21. J. Mohan and S. Maheshwari, Cascadable current-mode first-order all-pass filter based on minimal components, Sci. World J. 2013 (2013) 5, doi:10.1155/2013/859784. Crossref, ISIGoogle Scholar
    • 22. J. Mohan, Single active element based current-mode all-pass filter, Int. J. Comput. Appl. 82 (2013) 23–27. Google Scholar
    • 23. S. Maheshwari and I. A. Khan, Novel first-order current-mode allpass sections using CCIII, Act. Passive Electron. Compon. 27 (2004) 111–117, doi:10.1080/08827510310001616803. CrossrefGoogle Scholar
    • 24. M. Un and F. Kacar, Third generation current conveyor based current-mode first order all-pass filter and quadrature oscillator, IU-J. Electrical Electron. Eng. 8 (2008) 529–535. Google Scholar
    • 25. N. Herencsar, J. Koton, K. Vrba and O. Cicekoglu, New current-mode all-pass filter with grounded capacitor based on gain-variable CCIII, Proc. 11th Int. IEEE Region 8 AFRICON 2013, Pointe-Aux-Piments, Mauritius, 2013, pp. 559–562, doi:10.1109/AFRCON.2013.6757657. Google Scholar
    • 26. S. Minaei and M. A. Ibrahim, General configuration for realizing current-mode first-order all-pass filter using DVCC, Int. J. Electron. 92 (2005) 347–356, doi:10.1080/00207210412331334798. Crossref, ISIGoogle Scholar
    • 27. F. Kacar and M. Un, DVCC based current-mode first order all-pass filter and quadrature oscillator, Trakya Univ. J. Sci. 8 (2007) 1–5. Google Scholar
    • 28. M. Higashimura, Current-mode allpass filter using FTFN with grounded capacitor, Electron. Lett. 27 (1991) 1182–1183, doi:10.1049/el:19910737. Crossref, ISIGoogle Scholar
    • 29. N. Herencsar, J. Koton, A. Lahiri, B. Metin and K. Vrba, A voltage gain-controlled modified CFOA and its application in electronically tunable four-mode all-pass filter design, Int. J. Adv. Telecommun. Electrotech. Signals Syst. 1 (2012) 20–25, doi:10.11601/ijates.v1i1.27. Google Scholar
    • 30. B. Metin, K. Pal, S. Minaei and O. Cicekoglu, Trade-offs in the OTA-based analog filter design, Analog Integrated Circuits and Signal Process. 60 (2009) 205–213, doi:10.1007/s10470-008-9270-x. Crossref, ISIGoogle Scholar
    • 31. C. Psychalinos and K. Pal, A novel all-pass current-mode filter realized using a minimum number of single output OTAs, Frequenz 64 (2010) 30–32, doi:10.1515/FREQ.2010.64.1-2.30. Crossref, ISIGoogle Scholar
    • 32. A. Toker, S. Ozoguz, O. Cicekoglu and C. Acar, Current-mode allpass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration, IEEE Trans. Circuits Systems–II 47 (2000) 949–954, doi:10.1109/82.868465. CrossrefGoogle Scholar
    • 33. S. Kilinc and U. Cam, Current-mode first-order allpass filter employing single current operational amplifier, Analog Integr. Circuits Signal Process. 41 (2004) 47–53, doi:10.1023/B:ALOG.0000038282.60137.5f. Crossref, ISIGoogle Scholar
    • 34. A. U. Keskin and D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA), IEE Proc.-Circuits Devices and Syst. 153 (2006) 214–218, doi:10.1049/ip-cds:20050304. CrossrefGoogle Scholar
    • 35. A. Uygur and H. Kuntman, Low-voltage current differencing transconductance amplifier in a novel allpass configuration, Proc. 13th Conf. MELECON 2006, Malaga, Spain, 2006, pp. 23–26, doi:10.1109/MELCON.2006.1653026. Google Scholar
    • 36. W. Tanjaroen and W. Tangsrirat, Resistorless current-mode first-order allpass filter using CDTAs, Proc. 5th Int. Conf. ECTI-CON 2008, Krabi, Thailand, 2008, pp. 721–724, doi:10.1109/ECTICON.2008.4600532. Google Scholar
    • 37. W. Tangsrirat, T. Pukkalanun and W. Surakampontorn, Resistorless realization of current-mode first-order allpass filter using current differencing transconductance amplifiers, Microelectron. J. 41 (2010) 178–183, doi:10.1016/j.mejo.2010.02.001. Crossref, ISIGoogle Scholar
    • 38. A. Lahiri and A. Chowdhury, A novel first-order current-mode all-pass filter using CDTA, Radioengineering 18 (2009) 300–305. ISIGoogle Scholar
    • 39. N. Pandey and S. K. Paul, Single CDTA-based current mode all-pass filter and its applications, J. Electr. Comput. Eng. 2011 (2011) 5, doi:10.1155/2011/897631. Google Scholar
    • 40. E. Tlelo-Cuautle, L. G. De La Fraga, K. Phanrattanachai and K. Pitaksuttayaprot, CDCTA and OTA realizations of a multi-phase sinusoidal oscillator, IETE Tech. Rev. 32 (2015) 497–504, doi:10.1080/02564602.2015.1043149. Crossref, ISIGoogle Scholar
    • 41. R. Sotner, J. Jerabek, N. Herencsar, T. Zak, W. Jaikla and K. Vrba, Modified current differencing unit and its application for electronically reconfigurable simple first-order transfer function, Adv. Electri. Comput. Eng. 15 (2015) 3–10, doi:10.4316/AECE.2015.01001. Crossref, ISIGoogle Scholar
    • 42. D. Biolek and V. Biolkova, Allpass filter employing one grounded capacitor and one active element, Electron. Lett. 45 (2009) 807–808, doi:10.1049/el.2009.0575. Crossref, ISIGoogle Scholar
    • 43. W. Tangsrirat, P. Mongkolwai and T. Pukkalanun, Current-mode high-Q bandpass filter and mixed-mode quadrature oscillator using ZC-CFTAs and grounded capacitors, Indian J. Pure Appl. Phys. 50 (2012) 600–607. ISIGoogle Scholar
    • 44. W. Jaikla, A. Noppakarn and S. Lawanwisut, New gain controllable resistor-less current-mode first order allpass filter and its application, Radioengineering 21 (2012) 312–316. ISIGoogle Scholar
    • 45. N. Herencsar, J. Koton and K. Vrba, Electronically tunable phase shifter employing current-controlled current follower transconductance amplifiers (CCCFTAs), Proc. 32th Int. Conf. TSP 2009, Dunakiliti, Hungary, 2009, pp. 54–57. Google Scholar
    • 46. U. E. Ayten, M. Sagbas and S. Minaei, Realization of low-voltage modified CBTA and design of cascadable current-mode all-pass filter, Radioengineering 23 (2014) 523–531. ISIGoogle Scholar
    • 47. U. E. Ayten, M. Sagbas and H. Sedef, Current mode leapfrog ladder filters using a new active block, AEU — Int. J. Electron. Commun. 64 (2010) 503–511, doi:10.1016/j.aeue.2009.03.012. Crossref, ISIGoogle Scholar
    • 48. M. Sagbas, U. E. Ayten and H. Sedef, Current and voltage transfer function filters using a single active device, IET Circuits Devices Syst. 4 (2010) 78–86, doi:10.1049/iet-cds.2009.0121. Crossref, ISIGoogle Scholar
    • 49. M. Sagbas, Component reduced floating ±L, ±C and ±R simulators with grounded passive components, AEU — Int. J. Electron. Commun. 65 (2011) 794–798, doi:10.1016/j.aeue.2011.01.006. Crossref, ISIGoogle Scholar
    • 50. U. E. Ayten, M. Sagbas, N. Herencsar and J. Koton, Novel floating general element simulators using CBTA, Radioengineering 21 (2012) 11–19. ISIGoogle Scholar
    • 51. M. Sagbas and M. Koksal, Realization of a general resistorless active biquad using CBTA, J. Circuits, Syst. Comput. 21 (2012) 12, doi:10.1142/S0218126612500132. Link, ISIGoogle Scholar
    • 52. M. Koksal, Realization of a general all-pole current transfer function by using CBTA, Int. J. Circuit Theory Appl. 41 (2013) 319–329, doi:10.1002/cta.806. Crossref, ISIGoogle Scholar
    • 53. M. Sagbas, U. E. Ayten, N. Herencsar and S. Minaei, Current and voltage mode multiphase sinusoidal oscillators using CBTAs, Radioengineering 22 (2013) 24–33. ISIGoogle Scholar
    • 54. M. Sagbas, U. E. Ayten, H. Sedef and S. Minaei, Modified gorski-popiel technique and synthetic floating transformer circuit using minimum components, J. Circuits Syst. Comput. 26 (2017) 1–21, doi:10.1142/S021812661750013X. Link, ISIGoogle Scholar
    • 55. PTM 90nm CMOS technology SPICE BSIM3v3 parameters [online]: Google Scholar
    • 56. N. Herencsar, J. Koton, M. Sagbas and U. E. Ayten, New tunable resistorless CM first-order filter based on single CBTA and grounded capacitor, Proc. 2016 IEEE 59th Int. Midwest Symp. Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 2016, pp. 501–504, doi:10.1109/MWSCAS.2016.7870064. Google Scholar