World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Design Optimization and Analysis of Proof Mass Actuation for MEMS Accelerometer: A Simulation Study

    https://doi.org/10.1142/S0218126617500955Cited by:1 (Source: Crossref)

    In this paper, we present the design and analysis of the proof mass for capacitive based MEMS accelerometers. A study was done to determine the parameters (length of hinge and number of combs) to be optimized for the MEMS accelerometer design. The proposed design can measure the acceleration in x-, y- and z-axes. The design features a proof mass with interdigitated fingers along each side. These interdigitated fingers act as parallel plate capacitors. Due to acceleration, capacitance changes along the comb drive. This change in capacitance can be used to monitor the acceleration. Analysis has been carried out with different comb width designs. Using the MEMS CAD tool CoventorWare, the structure has been designed, simulated and analyzed. The process flow for the fabrication has also been proposed for the above structure. Comparative study with several designs has been made and the efficient design parameters to be considered while designing MEMS accelerometer were proposed. Based on the study, a set of optimized design parameters for the comb accelerometer were reported.

    This paper was recommended by Regional Editor Piero Malcovati.

    References

    • 1. M. Gad-el-Hak , The MEMS Handbook (CRC Press, 2001). CrossrefGoogle Scholar
    • 2. K. K. Mistry, K. Swamy and S. Sen , Design of an SOI-MEMS high resolution capacitive type single axis accelerometer, Microsyst. Technol. 16 (2010) 2057–2066. Crossref, Web of ScienceGoogle Scholar
    • 3. L. Sujatha, N. Vigneswaran and S. M. Yacin , Design and analysis of electrostatic micro tweezers with optimized hinges for biological applications using coventorWare, Procedia Eng. 64 (2013) 283–291. CrossrefGoogle Scholar
    • 4. Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida and T. Nakamura , A capacitive accelerometer using SDB-SOI structure, Sens. Actuators A, Phys. 53 (1996) 267–272. Crossref, Web of ScienceGoogle Scholar
    • 5. L. M. Roylance and J. B. Angell , A batch-fabricated silicon accelerometer, Electron Devices, IEEE Trans. 26 (1979) 1911–1917. Crossref, Web of ScienceGoogle Scholar
    • 6. R. Van Kampen and R. Wolffenbuttel , Modeling the mechanical behavior of bulk-micromachined silicon accelerometers, Sens. Actuators A, Phys. 64 (1998) 137–150. Crossref, Web of ScienceGoogle Scholar
    • 7. F. Rudolf, A. Jornod, J. Bergqvist and H. Leuthold , Precision accelerometers with μg resolution, Sens. Actuators A, Phys. 21 (1990) 297–302. Crossref, Web of ScienceGoogle Scholar
    • 8. S. Suzuki et al., Semiconductor capacitance-type accelerometer with PWM electrostatic servo technique, Sens. Actuators A, Phys. 21 (1990) 316–319. Crossref, Web of ScienceGoogle Scholar
    • 9. H. Seidel et al., Capacitive silicon accelerometer with highly symmetrical design, Sens. Actuators A, Phys. 21 (1990) 312–315. Crossref, Web of ScienceGoogle Scholar
    • 10. E. Peeters, S. Vergote, B. Puers and W. Sansen , A highly symmetrical capacitive micro-accelerometer with single degree-of-freedom response, J. Micromech. Microeng. 2 (1992) 104. CrossrefGoogle Scholar
    • 11. C. Lu, M. Lemkin and B. E. Boser , A monolithic surface micromachined accelerometer with digital output, IEEE J. Solid-State Circuits 30 (1995) 1367–1373. Crossref, Web of ScienceGoogle Scholar
    • 12. Analog Devices, ADXL50 Monolithic accelerometer with signal conditioning, Data Sheet Technical note, Norwood MA, USA, 1996. Google Scholar
    • 13. N. Yazdi, A. Salian and K. Najafi , A high sensitivity capacitive micro accelerometer with a folded-electrode structure, in Micro Electro Mechanical Systems, 1999. MEMS’99. 12th IEEE Int. Conf. (IEEE, 1999), pp. 600–605. Google Scholar
    • 14. K. Bhat et al., Design optimization, fabrication and testing of a capacitive silicon accelerometer using an soi approach, Int. J. Comput. Eng. Sci. 4 (2003) 485–488. LinkGoogle Scholar
    • 15. F. Castro, G. Brambilla, P. Verardi and A. D’Amico , MEMS accelerometer calibration at low frequencies, Proc. 12th Italian Conf. Sensors and Microsystems, Napoli, Italy, 12–14 February 2007 (World Scientific, 2008), p. 337. Google Scholar
    • 16. B. Chen, J. Miao, C. Lim, F. E. Tay and C. Iliescu , Dynamic behaviors of high-G MEMS accelerometer incorporated with novel micro-flexures, Int. J. Softw. Eng. Knowl. Eng. 15 (2005) 225–230. Link, Web of ScienceGoogle Scholar
    • 17. K. Miller, A. Cowen, G. Hames and B. Hardy , SOIMUMPs Design Handbook (MEMScAP, Durham, 2004). Google Scholar
    • 18. M. Rodrigues and P. Touboul , The LISA accelerometer, Adv. Space Res. 32 (2003) 1251–1254. CrossrefGoogle Scholar
    • 19. P. Touboul, B. Foulon and E. Willemenot , Electrostatic space accelerometers for present and future missions, Acta Astronaut. 45 (1999) 605–617. Crossref, Web of ScienceGoogle Scholar
    • 20. M. A. Erişmiş, Middle East Technical University (2004). Google Scholar
    • 21. I. E. Gonenli, Z. Celik-Butler and D. P. Butler , Surface micromachined MEMS accelerometers on flexible polyimide substrate, Sens. J. IEEE 11 (2011) 2318–2326. Crossref, Web of ScienceGoogle Scholar
    • 22. D. Hollocher, X. Zhang, A. Sparks, S. Bart, W. Sawyer, P. Narayanasamy and R. Mhatre , A very low cost, 3-axis, MEMS accelerometer for consumer applications. In Sensors, 2009 IEEE (IEEE, 2009), October, pp. 953–957. Google Scholar
    • 23. H. Qu, D. Fang and H. Xie , A single-crystal silicon 3-axis CMOS-MEMS accelerometer. In Sensors, 2004. Proceedings of IEEE (IEEE, 2004), October, pp. 661–664. Google Scholar
    • 24. K. Sharma, I. Macwan, L. Zhang, L. V. Hmurcik and X. Xiong, Design optimization of MEMS comb accelerometer. ASEE, https://www.asee.org/documents/zones/zone1/2008/student/ASEE12008_0050_paper.pdf. Google Scholar
    • 25. V. Benevicius, V. Ostasevicius and R. Gaidys , Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements, Sensors 13 (2013) 11184–11195. Crossref, Web of ScienceGoogle Scholar