World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

AN ALTERNATIVE APPROACH FOR OBTAINING 2D DISCRETE FILTERS BY CASCADING SECTIONS EACH HAVING UNITY DEGREE IN EACH VARIABLE

    https://doi.org/10.1142/S0218126604001830Cited by:0 (Source: Crossref)

    The properties of a 2D discrete transfer function with degree of each variable being unity are discussed. The coefficients of the denominator polynomial contain a parameter k (having real values) whose bounds are determined by stability considerations. These bounds are obtained by testing the overall polynomial at only four points z1=±1 and z2=±1. Suitable numerator polynomial can be associated to get the overall transfer function. Such structures can be cascaded so that the overall magnitude response can be changed by altering the response of one or more sections.

    References

    • D. E.   Dudgeon and R. M.   Mersereau , Multidimensional Digital Signal Processing ( Prentice-Hall , 1984 ) . Google Scholar
    • M. P. Ekstrom, R. F. Twogood and J. W. Woods, IEEE Trans. Acoustics, Speech and Signal Processing ASSP-28, 16 (1980). Google Scholar
    • D. E. Dudgeon, IEEE Trans. Acoustics, Speech and Signal Processing ASSP-28, 443 (1974). Google Scholar
    • A. V.   Oppenheim , R. W.   Schafer and J. R.   Buck , Discrete Time Signal Processing ( Prentice-Hall , 1999 ) . Google Scholar
    • W.-S. Lu, H.-P. Wang and A. Antoniou, IEEE Trans. Signal Processing 39, 2253 (1991). Crossref, Web of ScienceGoogle Scholar
    • S. A. H. Aly and M. M. Fahmy, IEEE Trans. Circuits Syst. CAS-25, 908 (1978). Google Scholar
    • G. Gu and B. A. Shenoi, IEEE Trans. Circuits Syst. 38, 602 (1991). CrossrefGoogle Scholar
    • C. Xiao and P. Agathoklis, IEEE Trans. Circuits Syst. 45, 1279 (1998). CrossrefGoogle Scholar
    • M. Ahmadi and V. Ramachandran, Proc. IEE 131, 151 (1984). Google Scholar
    • S. K. Mitra, Y. Neuvo and H. Roivaninen, J. Circuit Theor. Appl. 18, 107 (1990). Crossref, Web of ScienceGoogle Scholar
    • A. O. Hussein and M. M. Fahmy, Proc. IEE 138, 335 (1991). Google Scholar
    • T. B. Deng, IEEE Trans. Circuits Syst. 45, 330 (1998). CrossrefGoogle Scholar
    • C. S. Gargour and V. Ramachandran, Multidimensional Systems: Signal Processing and Modeling Techniques 69, 255 (1995). CrossrefGoogle Scholar
    • C. S. Gargour and V. Ramachandran, A graphical technique for the determination of the range of a multiplier in a stable 2D variable magnitude filter, 38th Midwest Symp. Circuits and Systems, Rio de Janeiro, Brazil, August 1995, pp. 474–477 . Google Scholar
    • V. Ramachandran and C. S. Gargour, Multidimensional Systems: Signal Processing and Modelling Techniques 69, 211 (1995). CrossrefGoogle Scholar
    • T. S. Huang, IEEE Trans. Audio Electroacoustics AU20, 158 (1972). Google Scholar