World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
SPECIAL ISSUE: STATE OF THE ART IN DIGITAL MAMMOGRAPHIC IMAGE ANALYSIS; Edited by K. W. Bowyer & S. AstleyNo Access

COMPARATIVE EVALUATION OF PATTERN RECOGNITION TECHNIQUES FOR DETECTION OF MICROCALCIFICATIONS IN MAMMOGRAPHY

    https://doi.org/10.1142/S0218001493000698Cited by:115 (Source: Crossref)

    Computer-assisted detection of microcalcifications in mammographic images will likely require a multistage algorithm that includes segmentation of possible microcalcifications, pattern recognition techniques to classify the segmented objects, a method to determine if a cluster of calcifications exists, and possibly a method to determine the probability of malignancy. This paper focuses on the first three of these stages, and especially on the classification of segmented local bright spots as either calcification or noncalcification. Seven classifiers (linear and quadratic classifiers, binary decision trees, a standard backpropagation network, 2 dynamic neural networks, and a K-nearest neighbor) are compared. In addition, a postprocessing step is performed on objects identified as calcifications by the classifiers to determine if any clusters of microcalcifications exist. A database of digitized film mammograms is used for training and testing. Detection accuracy of individual and clustered microcalcifications is compared across the seven methods using area under the ROC curve as a figure of merit.