World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MEASURING THE PERFORMANCE OF ORDINAL CLASSIFICATION

    https://doi.org/10.1142/S0218001411009093Cited by:73 (Source: Crossref)

    Ordinal classification is a form of multiclass classification for which there is an inherent order between the classes, but not a meaningful numeric difference between them. The performance of such classifiers is usually assessed by measures appropriate for nominal classes or for regression. Unfortunately, these do not account for the true dimension of the error.

    The goal of this work is to show that existing measures for evaluating ordinal classification models suffer from a number of important shortcomings. For this reason, we propose an alternative measure defined directly in the confusion matrix. An error coefficient appropriate for ordinal data should capture how much the result diverges from the ideal prediction and how "inconsistent" the classifier is in regard to the relative order of the classes. The proposed coefficient results from the observation that the performance yielded by the Misclassification Error Rate coefficient is the benefit of the path along the diagonal of the confusion matrix. We carry out an experimental study which confirms the usefulness of the novel metric.

    References