World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

COEVOLUTION OF NEAREST NEIGHBOR CLASSIFIERS

    https://doi.org/10.1142/S0218001407005752Cited by:15 (Source: Crossref)

    This paper presents experiments of Nearest Neighbor (NN) classifier design using different evolutionary computation methods. Through multiobjective and coevolution techniques, it combines genetic algorithms and genetic programming to both select NN prototypes and design a neighborhood proximity measure, in order to produce a more efficient and robust classifier. The proposed approach is compared with the standard NN classifier, with and without the use of classic prototype selection methods, and classic data normalization. Results on both synthetic and real data sets show that the proposed methodology performs as well or better than other methods on all tested data sets.

    References

    • T.   Bäck , D. B.   Fogel and Z.   Michalewicz (eds.) , Evolutionary Computation 1: Basic Algorithms and Operators ( Institute of Physics Publishing , Bristol, UK , 2000 ) . Google Scholar
    • W.   Banzhaf et al. , Genetic Programming — An Introduction on the Automatic Evolution of Computer Programs and Its Applications ( Morgan Kaufmann, Dpunkt.Verlag , 1998 ) . Google Scholar
    • J. Beaulieu, C. Gagné and M. Parizeau, Lens system design and re-engineering with evolutionary algorithms, Proc. Genetic and Evolutionary Computations Conf. (GECCO 2002) (2002) pp. 155–162. Google Scholar
    • C. L. Blake and C. J. Merz, UCI repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html (1998) . Google Scholar
    • S. Bleuleret al., Multiobjective genetic programming: reducing bloat using SPEA2, Proc. IEEE Congress on Evolutionary Computation (CEC 2001) (IEEE Press, 2001) pp. 536–543. Google Scholar
    • M. C. J. Bot, Feature extraction for the k-nearest neighbour classifier with genetic programming, Proc. European Conf. Genetic Programming (EuroGP 2001), Lecture Notes in Computer Science 2038 (Springer-Verlag, 2001) pp. 256–267. Google Scholar
    • H. Brighton and C. Mellish, Data Min. Knowl. Discov. 6(2), 153 (2002), DOI: 10.1023/A:1014043630878. Web of ScienceGoogle Scholar
    • J. R. Cano, F. Herrera and M. Lozano, IEEE Trans. Evolut. Comput. 7(6), 561 (2003), DOI: 10.1109/TEVC.2003.819265. Web of ScienceGoogle Scholar
    • J.-H. Chen, H.-M. Chen and S.-Y. Ho, Int. J. Approx. Reas. 40, 3 (2005), DOI: 10.1016/j.ijar.2004.11.009. Web of ScienceGoogle Scholar
    • C. A.   Coello , D. A.   Van Veldhuizen and G. B.   Lamont , Evolutionary Algorithms for Solving Multi-Objective Problems ( Kluwer Academic Publishers , 2002 ) . Google Scholar
    • T. M. Cover, IEEE Trans. Inform. Th. 14(1), 50 (1968), DOI: 10.1109/TIT.1968.1054098. Web of ScienceGoogle Scholar
    • E. D. de Jong and J. B. Pollack, Evolut. Comput. 12(2), 159 (2004), DOI: 10.1162/106365604773955139. Web of ScienceGoogle Scholar
    • E. D. de Jong, R. A. Watson and J. B. Pollack, Reducing bloat and promoting diversity using multi-objective methods, Proc. Genetic and Evolutionary Computation Conf. (GECCO 2001) (Morgan Kaufmann, San Francisco, CA, USA, 2001) pp. 11–18. Google Scholar
    • G. Demiröz and H. A. Güvenir, Genetic algorithms to learn feature weights for the nearest neighbor algorithm, Proc. Belgian-Dutch Conf. Machine Learning (BENELEARN 1996) (1996) pp. 117–126. Google Scholar
    • P. Domingos, Data Min. Knowl. Discov. 3, 409 (1999), DOI: 10.1023/A:1009868929893. Web of ScienceGoogle Scholar
    • R. O.   Duda , P. E.   Hart and D. G.   Stork , Pattern Classification , 2nd edn. ( John Wiley & Sons, Inc. , NY , 2001 ) . Google Scholar
    • M. Erickson, A. Mayer and J. Horn, The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems, Proc. Int. Conf. Evolutionary Multi-Criterion Optimization (EMO 2001) (2001) pp. 681–695. Google Scholar
    • F. Fernández and P. Isasi, J. Heurist. 10(4), 431 (2004). Web of ScienceGoogle Scholar
    • C. Gagné and M. Parizeau, Int. J. Artif. Intell. Tools 15(2), 173 (2006). Link, Web of ScienceGoogle Scholar
    • C. Gagné and M. Parizeau, Open BEAGLE W3 page. http://beagle.gel.ulaval.ca (2006) . Google Scholar
    • P. E. Hart, IEEE Trans. Inform. Th. 14, 515 (1968), DOI: 10.1109/TIT.1968.1054155. Web of ScienceGoogle Scholar
    • W. D. Hillis, Physica D 42, 228 (1990), DOI: 10.1016/0167-2789(90)90076-2. Web of ScienceGoogle Scholar
    • S.-Y. Ho, C.-C. Liu and S. Liu, Patt. Recogn. Lett. 23(13), 1495 (2002), DOI: 10.1016/S0167-8655(02)00109-5. Web of ScienceGoogle Scholar
    • J. M.   Holland , Adaptation in Natural and Artificial Systems ( University of Michigan Press , Ann Arbor, MI , 1975 ) . Google Scholar
    • H. Iba, H. de Garis and T. Sato, Advances in Genetic Programming, Complex Adaptive Systems, ed. K. E. Kinnear (MIT Press, 1994) pp. 265–284. Google Scholar
    • D. D. Jensen and P. R. Cohen, Mach. Learn. 38(3), 309 (2000), DOI: 10.1023/A:1007631014630. Web of ScienceGoogle Scholar
    • J. R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , 1992 ) . Google Scholar
    • J. R.   Koza et al. , Genetic Programming 3: Darwinian Invention and Problem Solving ( Morgan Kaufman , 1999 ) . Google Scholar
    • K. Krawiec, Gen. Program. Evol. Mach. 3(4), 329 (2002), DOI: 10.1023/A:1020984725014. Google Scholar
    • L. I. Kuncheva and L. C. Jain, Patt. Recogn. Lett. 20(11–13), 1149 (1999), DOI: 10.1016/S0167-8655(99)00082-3. Web of ScienceGoogle Scholar
    • W. B. Langdon, Advances in Genetic Programming 2, eds. P. J. Angeline and K. E. Kinnear Jr. (MIT Press, 1996) pp. 395–414. Google Scholar
    • M.   Mitchell , An Introduction to Genetic Algorithms , Complex Adaptive Systems ( MIT Press , 1996 ) . Google Scholar
    • L. S. Oliveiraet al., Feature selection using multi-objective genetic algorithms for handwritten digit recognition, Proc. Int. Conf. Pattern Recognition (ICPR 2002) (2002) pp. 568–571. Google Scholar
    • L. Panait and S. Luke, Methods for evolving robust programs, Proc. Genetic and Evolutionary Computation Conf. (GECCO 2003), Lecture Notes in Computer Science 2724 (Springer-Verlag, Chicago, IL, USA, 2003) pp. 1740–1751. Google Scholar
    • M. A. Potter and K. A. De Jong, Evolut. Comput. 8(1), 1 (2000), DOI: 10.1162/106365600568086. Web of ScienceGoogle Scholar
    • M. L. Raymeret al., IEEE Trans. Evolut. Comput. 4(2), 164 (2000), DOI: 10.1109/4235.850656. Web of ScienceGoogle Scholar
    • J. Rissanen, Automatica 14, 465 (1978), DOI: 10.1016/0005-1098(78)90005-5. Web of ScienceGoogle Scholar
    • J. Sherrah, R. E. Bogner and A. Bouzerdoum, Automatic selection of features for classification using genetic programming, Proc. Australian and New Zealand Intelligent Information Systems Conf. (ANZIIS 1996) (1996) pp. 284–287. Google Scholar
    • J. Sherrah, R. E. Bogner and A. Bouzerdoum, The evolutionary pre-processor: automatic feature extraction for supervised classification using genetic programming, Genetic Programming 1997: Proc. Second Annual Conf. (Morgan Kaufmann, 1997) pp. 304–312. Google Scholar
    • M. G. Smith and L. Bull, Gen. Program. Evol. Mach. 6(3), 265 (2005), DOI: 10.1007/s10710-005-2988-7. Google Scholar
    • D. Song, M. I. Heywood and A. Nur Zincir-Heywood, IEEE Trans. Evolut. Comput. 9(3), 225 (2005), DOI: 10.1109/TEVC.2004.841683. Web of ScienceGoogle Scholar
    • T. Soule and J. A. Foster, Evolut. Comput. 6(4), 293 (1998), DOI: 10.1162/evco.1998.6.4.293. Web of ScienceGoogle Scholar
    • R. P. Wiegand, W. C. Liles and K. A. De Jong, An empirical analysis of collaboration methods in cooperative coevolutionary algorithms, Proc. Genetic and Evolutionary Computation Conf. (GECCO 2001) (Morgan Kaufmann, 2001) pp. 1235–1242. Google Scholar
    • D. L. Wilson, IEEE Trans. Syst. Man Cybern. 2(3), 408 (1972), DOI: 10.1109/TSMC.1972.4309137. Web of ScienceGoogle Scholar
    • D. H. Wolpert and W. G. Macready, IEEE Trans. Evolut. Comput. 1(1), 67 (1997), DOI: 10.1109/4235.585893. Google Scholar
    • J. Yang and V. Honavar, IEEE Intell. Syst. 13(2), 44 (1998), DOI: 10.1109/5254.671091. Web of ScienceGoogle Scholar