World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MULTIPHASE GENETIC PROGRAMMING: A CASE STUDY IN SUMO MANEUVER EVOLUTION

    In this paper, we describe a new evolutionary computation approach, called multiphase genetic programming (MPGP). The special features of this approach lie in its variable-granularity representations of chromosomes and their corresponding genetic operations. In the paper, we provide an overview of the MPGP approach as well as details on how the sumo maneuver evolution experiments are carried out and how the MPGP-based case study differs from others.

    Partial results presented in this paper have been published in Jiming Liu and Shiwu Zhang, "Multi-phase sumo maneuver learning," Robotica22 (2004) 61–75, Cambridge University Press Copyright. Reprint with permission.

    References

    • D. Floreano and F. Mondada, Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot, From Animals to Animats 3: Proc. Third Int. Conf. Simulation of Adaptive Behavior (SAB-94) (MIT Press, Cambridge, MA, 1994) pp. 421–430. Google Scholar
    • D. Floreano and F. Mondada, IEEE Trans. Syst. Man and Cybern. — Part B 26, 396 (1996), DOI: 10.1109/3477.499791. Crossref, ISIGoogle Scholar
    • D. Floreano and F. Mondada, Neural Networks 11, 1461 (1998), DOI: 10.1016/S0893-6080(98)00082-3. Crossref, ISIGoogle Scholar
    • D. Floreano and J. Urzelai, Neural Networks 13, 431 (2000), DOI: 10.1016/S0893-6080(00)00032-0. Crossref, ISIGoogle Scholar
    • F. Gomez and R. Miikkulainen, Adaptive Behavior 5, 317 (1997), DOI: 10.1177/105971239700500305. Crossref, ISIGoogle Scholar
    • I. Harvey, Species adaptation genetic algorithms: a basis for a continuing SAGA, Toward a Practice of Autonomous Systems: Proc. First European Conf. Artificial Life (MIT Press, Cambridge, MA, 1992) pp. 346–354. Google Scholar
    • I. Harvey, Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity XVI (1993) pp. 299–326. Google Scholar
    • I. Harvey, Evol. Comput. 4(3), 313 (1996), DOI: 10.1162/evco.1996.4.3.313. Crossref, ISIGoogle Scholar
    • I. Harvey, Artificial evolution: a continuing SAGA, Evolutionary Robotics: From Intelligent Robots to Artificial Life, ER20012217, ed. T. Gomi (Springer-Verlag, 2001) pp. 94–109. Google Scholar
    • I. Harvey, P. Husbands and D. Cliff, Issues in evolutionary robotics, From Animals to Animats 3: Proc. Third Int. Conf. Simulation of Adaptive Behavior (SAB-94) (MIT Press, Cambridge, MA, 1994) pp. 364–373. Google Scholar
    • J. R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , Cambridge, MA , 1992 ) . Google Scholar
    • J.   Liu , Autonomous Agents and Multi-Agent Systems: Explorations in Learning, Self-Organization, and Adaptive Computation ( World Scientific , 2001 ) . CrossrefGoogle Scholar
    • J.   Liu and J.   Wu , Multi-Agent Robotic Systems ( CRC Press , 2001 ) . CrossrefGoogle Scholar
    • O. Miglino, H. H. Lund and S. Nolfi, Artif. Life 2, 417 (1995). CrossrefGoogle Scholar
    • P. Nordin and W. Banzhaf, Genetic programming controlling a miniature robot, Working Notes for the AAAI-95 Fall Symp. Genetic Programming, eds. E. V. Siegel and J. R. Koza (Cambridge, MA, 1995) pp. 61–67. Google Scholar
    • P. Nordin and W. Banzhaf, Adaptive Behavior 5, 107 (1997), DOI: 10.1177/105971239700500201. Crossref, ISIGoogle Scholar
    • S. Nolfiet al., How to evolve autonomous robots: Different approaches in evolutionary robotics, Artificial Life IV: Proc. Fourth Int. Workshop on the Synthesis and Simulation of Living Systems (MIT Press, Cambridge, MA, 1994) pp. 190–198. Google Scholar
    • S. Nolfi and D. Parisi, Evolving non-trivial behaviors on real robots: an autonomous robot that picks up objects, Proc. Fourth Congress of Italian Association of Artificial Intelligence (Springer Verlag, 1995) pp. 243–254. Google Scholar
    • C. Reynolds, Artificial Life III, Santa Fe Institute Studies in the Sciences of Complexity XVI, ed. C. Langton (1993) pp. 327–346. Google Scholar
    • C. Reynolds, Evolution of corridor following in a noisy world, From Animals to Animats 3: Proc. Third Int. Conf. Simulation of Adaptive Behavior (SAB-94) (MIT Press, Cambridge, MA, 1994) pp. 402–410. Google Scholar
    • J. Xiaoet al., IEEE Trans. Evol. Comput. 1, 18 (1997). CrossrefGoogle Scholar
    • B. Yamauchi and R. D. Beer, Integrating reactive, sequential and learning behavior using dynamical neural networks, From Animals to Animats 3: Proc. Third Int. Conf. Simulation of Adaptive Behavior (SAB-94) (MIT Press, Cambridge, MA, 1994) pp. 382–391. Google Scholar
    • A. Murray and S. J. Louis, Design strategies for evolutionary robotics, Intelligent Systems: Third Golden West Int. Conf. (Kluwer Academic Publishers, 1995) pp. 609–616. Google Scholar
    • P. Husbands, The artificial evolution of robot control systems, Adaptive Computing in Engineering Design and Control '96 (ACEDC'96), 2nd Int. Conf. Integration of Genetic Algorithms and Neural Network Computing and Related Adaptive Techniques with Current Engineering Practice, eds. I. Parmee and M. J. Denham (1996) pp. 26–28. Google Scholar
    • M. Mataric and D. Cliff, J. Robot. Auton. Syst. 19(1), 67 (1996), DOI: 10.1016/S0921-8890(96)00034-6. Crossref, ISIGoogle Scholar
    • S.   Nolfi and D.   Floreano , Evolutionary Robotics: Biology, Intelligence and Technology of Self-Organizing Machines ( MIT Press , Cambridge, MA , 2000 ) . Google Scholar
    • D. Floreano and J. Urzelai, J. Three Dimensional Images 14(4), 64 (2000). ISIGoogle Scholar
    • M. C. Martin, Visual obstacle avoidance using genetic programming: first results, Proc. Genetic and Evolutionary Comput. Conf. (GECCO-2001) (2001) pp. 1107–1113. Google Scholar
    • G. Hornby, H. Lipson and J. Pollack, Evolution of generative design systems for modular physical robots, Int. Conf. Robotics and Automation (2001) pp. 4146–4151. Google Scholar
    • G. Hornby and J. Pollack, The advantages of generative grammatical encodings for physical design, Congress on Evolutionary Computation (CEC) (2001) pp. 600–607. Google Scholar
    • M. Colombetti and M. Dorigo, Learning to control an autonomous robot by distributed genetic algorithms, From Animals to Animats 2: Proc. Second Int. Conf. Simulation of Adaptive Behavior (SAB-93) (MIT Press, Cambridge, MA, 1993) pp. 305–312. Google Scholar
    • L. Steels, Emergent functionality in robotic agents through online evolution, Artificial Life IV: Proc. Fourth Int. Workshop on the Synthesis and Simulation of Living Systems (MIT Press, Cambridge, MA, 1994) pp. 8–16. Google Scholar