World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Forensic science and fractal nature analysis

    https://doi.org/10.1142/S0217984921504935Cited by:0 (Source: Crossref)

    Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis.

    References

    • 1. V. V. Mitić, G. Lazović, D. Mirjanić, H. Fecht, B. Vlahović and W. Arnold, Mod. Phys. Lett. B 34 (2020) 2050421. Link, Web of Science, ADSGoogle Scholar
    • 2. V. V. Mitić, P.-Y. Chen, Y.-Y. Chou, I. D. Ilic, B. Marković and G. Lazović, Mod. Phys. Lett. B 35 (2021) 2150318. Link, Web of Science, ADSGoogle Scholar
    • 3. M. T. Miller and P. Massey, The Crime Scene: A Visual Guide (Academic Press, San Diego, 2015), p. 45. Google Scholar
    • 4. D. Simeunović, 4th Serbian Ceramic Society Conf. ACA IV (2015), p. 38. Google Scholar
    • 5. A. Valavanidis and T. Vlachogianni, Sci. Adv. Environ. Toxicol. Ecotoxicol. 4 (2013) 1. Google Scholar
    • 6. G. Delmonaco, C. Margottini and D. Spizzichino, Rock fall hazard assessment in the Siq of Petra, Jordan, in Landslide Science and Practice: Risk Assessment, Management and Mitigation, eds. P. CanutiC. MargottiniK. Sassa, Vol. 6 (Springer, Heidelberg, 2013), p. 441. CrossrefGoogle Scholar
    • 7. F. Garzia, F. Borghini, A. Bruni, M. Lombardi, P. Mighetto, S. Ramalingam and S. B. Russo, Int. J. Saf. Secur. Eng. 10 (2020) 11. Google Scholar
    • 8. W. Itano, Trilobite Tales 37 (2019) 17. Google Scholar
    • 9. A. M. Lister, V. Dimitrijević, Z. Marković, S. Knezević and D. Mol, Quat. Int. (2012). Google Scholar
    • 10. S. G. Lucas, W. A. DiMichele and B. D. Allen, New Mexico Mus. Nat. Hist. Sci. Bull. 84 (2021). Google Scholar
    • 11. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, New York, 1977). Google Scholar
    • 12. V. V. Mitić, G. Lazović, V. Paunović, J. R. Hwu, S.-C. Tsay, T.-P. Perng, S. Veljković and B. Vlahović, J. Eur. Ceram. Soc. 39 (2019) 3513. Crossref, Web of ScienceGoogle Scholar
    • 13. O. Zmeškal, M. Veselý, M. Nežádal and M. Buchniček, HarFA — Harmonic Fractal Image Analysis (2001), pp. 3–5. Google Scholar
    • 14. M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H.-O. Peitgen, D. Saupe and R. F. Voss, The Science of Fractal Images (Springer Verlag, New York, 1988). CrossrefGoogle Scholar
    • 15. D. F. Watson, Contouring: A Guide to the Analysis and Display of Spatial Data (Pergamon Press, Oxford, 1992). Google Scholar
    • 16. S. Radosavljević, J. Stojanović, A. Radosavljevic-Mihajlovic, N. Vuković, S. Matijasević and M. Stojanović, Ann. Geol. Penins. Balk. 75 (2014) 75. CrossrefGoogle Scholar
    • 17. A. S. Radosavljevic-Mihajlovic, A. S. Daković, V. D. Kasić, V. V. Mitić, J. N. Stojanović, M. D. Sokić and B. R. Marković, Hem. Ind. 72 (2018) 371. Crossref, Web of ScienceGoogle Scholar
    • 18. S. Radosavljević, R. Milicević and B. Panić, in Proc. 11th Congr. Geologist of Yugoslavia (1986), p. 357. Google Scholar
    • 19. M. N. Stanković, N. S. Krstić, D. M. Ðorđević, N. Anastasijević, V. V. Mitić, G. A. Topličić-Ćurčić and A. J. Momčilović-Petronijević, Sci. Sinter. 51 (2019) 233. Crossref, Web of ScienceGoogle Scholar
    • 20. V. V. Mitić, G. Lazović, J. Ž. Manojlović, W.-C. Huang, M. M. Stojiljković, H. Facht and B. Vlahović, Therm. Sci. 24 (2020) 2203. Crossref, Web of ScienceGoogle Scholar
    • 21. V. V. Mitić, G. Lazović, V. Paunović, N. Cvetković, D. Jovanović, S. Veljković, B. Randjelović and B. Vlahović, Ceram. Int. 45 (2019) 20475. Crossref, Web of ScienceGoogle Scholar
    • 22. V. V. Mitić, G. Lazović, V. Paunović, S. Veljković, B. Randjelović, B. Vlahović and H. Fecht, Ferroelectrics 545 (2019) 184. Crossref, Web of Science, ADSGoogle Scholar
    • 23. V. V. Mitić, H.-J. Fecht, M. Mohr, G. Lazović and L. Kocić, AIP Adv. 8 (2018) 075024. Crossref, Web of ScienceGoogle Scholar
    • 24. V. V. Mitić, L. Kocić, V. Paunović, G. Lazović and M. Miljković, Mater. Res. Bull. 101 (2018) 175, https://doi.org/10.1016/j.materresbull.2018.01.019. Crossref, Web of ScienceGoogle Scholar
    • 25. D. J. S. Barrera, Q. H. S. Relatorres and K. R. Rosento, UV J. Res. 7 (2013) 35. Google Scholar
    • 26. V. V. Mitić, L. Kocić, V. Paunović, F. Bastić and D. Sirmić, Sci. Sinter. 47(2) (2015) 195. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!